Lightweight retinal vessel segmentation method based on graph convolution network and partial convolution

The invention provides a light-weight retinal vessel segmentation method based on a graph convolutional network and partial convolution, which comprises the following steps of: constructing a light-weight retinal vessel segmentation network model based on the graph convolutional network and the part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WAN HAOMING, WANG HAIXIANG, ZHANG LEQIAN, CUI SHAOGUO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WAN HAOMING
WANG HAIXIANG
ZHANG LEQIAN
CUI SHAOGUO
description The invention provides a light-weight retinal vessel segmentation method based on a graph convolutional network and partial convolution, which comprises the following steps of: constructing a light-weight retinal vessel segmentation network model based on the graph convolutional network and the partial convolution, wherein the light-weight retinal vessel segmentation network model is provided with a feature encoder, a multi-scale feature fusion device, a feature decoder and a label predictor; training and parameter optimization of a retinal vessel segmentation network model, and automatic semantic segmentation of a retinal vessel structure. According to the method, a symmetric codec deep learning model is built, partial convolution is adopted to replace conventional convolution to reduce the calculation complexity of the model, a K-nearest neighbor algorithm is used to convert a feature graph into a graph structure, then graph convolution is used to extract global features of the image, a multi-scale feature
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117315258A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117315258A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117315258A3</originalsourceid><addsrcrecordid>eNqNjLEKwjAURbs4iPoPzw9wqKXoWoriIE7u5dlc22CahOTZ_r5RHBxd7uVyD2ee6bPuepnwTgoQbdnQiBhhKKIbYIVFO0sDpHeKbhyhKO0usO-pdXZ05vkhLGRy4UFsFXkOopPp519mszubiNW3F9n6eLjWpw28axA9t0iGpr7k-a7Iy225r4p_mBf3uUH6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Lightweight retinal vessel segmentation method based on graph convolution network and partial convolution</title><source>esp@cenet</source><creator>WAN HAOMING ; WANG HAIXIANG ; ZHANG LEQIAN ; CUI SHAOGUO</creator><creatorcontrib>WAN HAOMING ; WANG HAIXIANG ; ZHANG LEQIAN ; CUI SHAOGUO</creatorcontrib><description>The invention provides a light-weight retinal vessel segmentation method based on a graph convolutional network and partial convolution, which comprises the following steps of: constructing a light-weight retinal vessel segmentation network model based on the graph convolutional network and the partial convolution, wherein the light-weight retinal vessel segmentation network model is provided with a feature encoder, a multi-scale feature fusion device, a feature decoder and a label predictor; training and parameter optimization of a retinal vessel segmentation network model, and automatic semantic segmentation of a retinal vessel structure. According to the method, a symmetric codec deep learning model is built, partial convolution is adopted to replace conventional convolution to reduce the calculation complexity of the model, a K-nearest neighbor algorithm is used to convert a feature graph into a graph structure, then graph convolution is used to extract global features of the image, a multi-scale feature</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231229&amp;DB=EPODOC&amp;CC=CN&amp;NR=117315258A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231229&amp;DB=EPODOC&amp;CC=CN&amp;NR=117315258A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WAN HAOMING</creatorcontrib><creatorcontrib>WANG HAIXIANG</creatorcontrib><creatorcontrib>ZHANG LEQIAN</creatorcontrib><creatorcontrib>CUI SHAOGUO</creatorcontrib><title>Lightweight retinal vessel segmentation method based on graph convolution network and partial convolution</title><description>The invention provides a light-weight retinal vessel segmentation method based on a graph convolutional network and partial convolution, which comprises the following steps of: constructing a light-weight retinal vessel segmentation network model based on the graph convolutional network and the partial convolution, wherein the light-weight retinal vessel segmentation network model is provided with a feature encoder, a multi-scale feature fusion device, a feature decoder and a label predictor; training and parameter optimization of a retinal vessel segmentation network model, and automatic semantic segmentation of a retinal vessel structure. According to the method, a symmetric codec deep learning model is built, partial convolution is adopted to replace conventional convolution to reduce the calculation complexity of the model, a K-nearest neighbor algorithm is used to convert a feature graph into a graph structure, then graph convolution is used to extract global features of the image, a multi-scale feature</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwjAURbs4iPoPzw9wqKXoWoriIE7u5dlc22CahOTZ_r5RHBxd7uVyD2ee6bPuepnwTgoQbdnQiBhhKKIbYIVFO0sDpHeKbhyhKO0usO-pdXZ05vkhLGRy4UFsFXkOopPp519mszubiNW3F9n6eLjWpw28axA9t0iGpr7k-a7Iy225r4p_mBf3uUH6</recordid><startdate>20231229</startdate><enddate>20231229</enddate><creator>WAN HAOMING</creator><creator>WANG HAIXIANG</creator><creator>ZHANG LEQIAN</creator><creator>CUI SHAOGUO</creator><scope>EVB</scope></search><sort><creationdate>20231229</creationdate><title>Lightweight retinal vessel segmentation method based on graph convolution network and partial convolution</title><author>WAN HAOMING ; WANG HAIXIANG ; ZHANG LEQIAN ; CUI SHAOGUO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117315258A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WAN HAOMING</creatorcontrib><creatorcontrib>WANG HAIXIANG</creatorcontrib><creatorcontrib>ZHANG LEQIAN</creatorcontrib><creatorcontrib>CUI SHAOGUO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WAN HAOMING</au><au>WANG HAIXIANG</au><au>ZHANG LEQIAN</au><au>CUI SHAOGUO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Lightweight retinal vessel segmentation method based on graph convolution network and partial convolution</title><date>2023-12-29</date><risdate>2023</risdate><abstract>The invention provides a light-weight retinal vessel segmentation method based on a graph convolutional network and partial convolution, which comprises the following steps of: constructing a light-weight retinal vessel segmentation network model based on the graph convolutional network and the partial convolution, wherein the light-weight retinal vessel segmentation network model is provided with a feature encoder, a multi-scale feature fusion device, a feature decoder and a label predictor; training and parameter optimization of a retinal vessel segmentation network model, and automatic semantic segmentation of a retinal vessel structure. According to the method, a symmetric codec deep learning model is built, partial convolution is adopted to replace conventional convolution to reduce the calculation complexity of the model, a K-nearest neighbor algorithm is used to convert a feature graph into a graph structure, then graph convolution is used to extract global features of the image, a multi-scale feature</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117315258A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Lightweight retinal vessel segmentation method based on graph convolution network and partial convolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WAN%20HAOMING&rft.date=2023-12-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117315258A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true