Covariant offset correction method for water chilling unit LSTM fault diagnosis

The invention discloses a covariable offset correction method for water chilling unit LSTM fault diagnosis, and belongs to the field of water chilling unit fault diagnosis methods. Aiming at the defect that a single neural network, such as a 1DCNN network, cannot fully extract data features, a deep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SUN YU, JIANG ZHOUSHU, DING QIANG, XIA YUDONG, LI CONG, JIANG AIPENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SUN YU
JIANG ZHOUSHU
DING QIANG
XIA YUDONG
LI CONG
JIANG AIPENG
description The invention discloses a covariable offset correction method for water chilling unit LSTM fault diagnosis, and belongs to the field of water chilling unit fault diagnosis methods. Aiming at the defect that a single neural network, such as a 1DCNN network, cannot fully extract data features, a deep learning fault diagnosis method combining an LSTM network and the 1DCNN is selected. According to the method, the advantages of extracting sample local features by 1DCNN and processing a sample time sequence by LSTM are combined, and data sample features are fully extracted from space and time dimensions; aiming at the problems of unstable network training process and overfitting caused by internal covariable offset in a neural network, a layer normalization (LN) technology is utilized to perform normalization operation on data feature information before the data feature information enters an LSTM layer, so that the problem of network training overfitting caused by covariable offset is effectively solved, the diagn
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117312903A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117312903A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117312903A3</originalsourceid><addsrcrecordid>eNqNyjsOwjAMANAsDAi4gzkAEiEDYkQRiIHPQPfKSp3WUoirxIXrs3AApre8uXl4eWNhzAoSYyWFIKVQUJYML9JBOohS4INKBcLAKXHuYcqscH02N4g4JYWOsc9SuS7NLGKqtPq5MOvzqfGXDY3SUh0xUCZt_d3avbO7w9Yd3T_nC2OZNuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Covariant offset correction method for water chilling unit LSTM fault diagnosis</title><source>esp@cenet</source><creator>SUN YU ; JIANG ZHOUSHU ; DING QIANG ; XIA YUDONG ; LI CONG ; JIANG AIPENG</creator><creatorcontrib>SUN YU ; JIANG ZHOUSHU ; DING QIANG ; XIA YUDONG ; LI CONG ; JIANG AIPENG</creatorcontrib><description>The invention discloses a covariable offset correction method for water chilling unit LSTM fault diagnosis, and belongs to the field of water chilling unit fault diagnosis methods. Aiming at the defect that a single neural network, such as a 1DCNN network, cannot fully extract data features, a deep learning fault diagnosis method combining an LSTM network and the 1DCNN is selected. According to the method, the advantages of extracting sample local features by 1DCNN and processing a sample time sequence by LSTM are combined, and data sample features are fully extracted from space and time dimensions; aiming at the problems of unstable network training process and overfitting caused by internal covariable offset in a neural network, a layer normalization (LN) technology is utilized to perform normalization operation on data feature information before the data feature information enters an LSTM layer, so that the problem of network training overfitting caused by covariable offset is effectively solved, the diagn</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231229&amp;DB=EPODOC&amp;CC=CN&amp;NR=117312903A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231229&amp;DB=EPODOC&amp;CC=CN&amp;NR=117312903A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUN YU</creatorcontrib><creatorcontrib>JIANG ZHOUSHU</creatorcontrib><creatorcontrib>DING QIANG</creatorcontrib><creatorcontrib>XIA YUDONG</creatorcontrib><creatorcontrib>LI CONG</creatorcontrib><creatorcontrib>JIANG AIPENG</creatorcontrib><title>Covariant offset correction method for water chilling unit LSTM fault diagnosis</title><description>The invention discloses a covariable offset correction method for water chilling unit LSTM fault diagnosis, and belongs to the field of water chilling unit fault diagnosis methods. Aiming at the defect that a single neural network, such as a 1DCNN network, cannot fully extract data features, a deep learning fault diagnosis method combining an LSTM network and the 1DCNN is selected. According to the method, the advantages of extracting sample local features by 1DCNN and processing a sample time sequence by LSTM are combined, and data sample features are fully extracted from space and time dimensions; aiming at the problems of unstable network training process and overfitting caused by internal covariable offset in a neural network, a layer normalization (LN) technology is utilized to perform normalization operation on data feature information before the data feature information enters an LSTM layer, so that the problem of network training overfitting caused by covariable offset is effectively solved, the diagn</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjsOwjAMANAsDAi4gzkAEiEDYkQRiIHPQPfKSp3WUoirxIXrs3AApre8uXl4eWNhzAoSYyWFIKVQUJYML9JBOohS4INKBcLAKXHuYcqscH02N4g4JYWOsc9SuS7NLGKqtPq5MOvzqfGXDY3SUh0xUCZt_d3avbO7w9Yd3T_nC2OZNuQ</recordid><startdate>20231229</startdate><enddate>20231229</enddate><creator>SUN YU</creator><creator>JIANG ZHOUSHU</creator><creator>DING QIANG</creator><creator>XIA YUDONG</creator><creator>LI CONG</creator><creator>JIANG AIPENG</creator><scope>EVB</scope></search><sort><creationdate>20231229</creationdate><title>Covariant offset correction method for water chilling unit LSTM fault diagnosis</title><author>SUN YU ; JIANG ZHOUSHU ; DING QIANG ; XIA YUDONG ; LI CONG ; JIANG AIPENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117312903A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SUN YU</creatorcontrib><creatorcontrib>JIANG ZHOUSHU</creatorcontrib><creatorcontrib>DING QIANG</creatorcontrib><creatorcontrib>XIA YUDONG</creatorcontrib><creatorcontrib>LI CONG</creatorcontrib><creatorcontrib>JIANG AIPENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUN YU</au><au>JIANG ZHOUSHU</au><au>DING QIANG</au><au>XIA YUDONG</au><au>LI CONG</au><au>JIANG AIPENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Covariant offset correction method for water chilling unit LSTM fault diagnosis</title><date>2023-12-29</date><risdate>2023</risdate><abstract>The invention discloses a covariable offset correction method for water chilling unit LSTM fault diagnosis, and belongs to the field of water chilling unit fault diagnosis methods. Aiming at the defect that a single neural network, such as a 1DCNN network, cannot fully extract data features, a deep learning fault diagnosis method combining an LSTM network and the 1DCNN is selected. According to the method, the advantages of extracting sample local features by 1DCNN and processing a sample time sequence by LSTM are combined, and data sample features are fully extracted from space and time dimensions; aiming at the problems of unstable network training process and overfitting caused by internal covariable offset in a neural network, a layer normalization (LN) technology is utilized to perform normalization operation on data feature information before the data feature information enters an LSTM layer, so that the problem of network training overfitting caused by covariable offset is effectively solved, the diagn</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117312903A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Covariant offset correction method for water chilling unit LSTM fault diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A49%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUN%20YU&rft.date=2023-12-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117312903A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true