Feature selection method for multi-label data, terminal equipment and storage medium

The invention relates to a feature selection method for multi-label data, terminal equipment and a storage medium. The method comprises the following steps: constructing a target function for feature selection by adopting a maximum entropy model; solving the target function to obtain the size of a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIN SHIDONG, MAO YU, LIN YAOJIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIN SHIDONG
MAO YU
LIN YAOJIN
description The invention relates to a feature selection method for multi-label data, terminal equipment and a storage medium. The method comprises the following steps: constructing a target function for feature selection by adopting a maximum entropy model; solving the target function to obtain the size of a mapping parameter corresponding to each feature in the feature space; and carrying out feature selection based on the mapping parameters. According to the method, a shared generic feature relationship is constructed in an output space by using linear correlation among the marks, and feature weights obtained by mark distribution mutual information analysis are used for feature weighting. In addition, a sparse normal form is used for selecting common features with high classification capability in the whole marking space, and the robustness of the algorithm is improved. 本发明涉及一种多标记数据的特征选择方法、终端设备及存储介质,该方法中包括:采用最大熵模型构建用于特征选择的目标函数;通过对目标函数进行求解,得到特征空间中各特征对应的映射参数的大小;基于映射参数的大小进行特征选择。本发明利用标记间的线性相关性在输出空间上构建它们所共享的类属特征关系,并使用标记分布互
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117312789A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117312789A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117312789A3</originalsourceid><addsrcrecordid>eNqNy60OwjAUhuEaBAHu4eCZKBMDSRYWFGp-OazfoEn_aE_vHwQXgHrN867VOIClZlCBwyw2BvKQVzS0xEy-OrGN4wccGRY-kCB7G9gR3tUmjyDEwVCRmPmJ72ts9Vu1WtgV7H7dqP1wHftbgxQnlMQzAmTq71p3rT52p_Ol_cd8AJu-ON4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Feature selection method for multi-label data, terminal equipment and storage medium</title><source>esp@cenet</source><creator>LIN SHIDONG ; MAO YU ; LIN YAOJIN</creator><creatorcontrib>LIN SHIDONG ; MAO YU ; LIN YAOJIN</creatorcontrib><description>The invention relates to a feature selection method for multi-label data, terminal equipment and a storage medium. The method comprises the following steps: constructing a target function for feature selection by adopting a maximum entropy model; solving the target function to obtain the size of a mapping parameter corresponding to each feature in the feature space; and carrying out feature selection based on the mapping parameters. According to the method, a shared generic feature relationship is constructed in an output space by using linear correlation among the marks, and feature weights obtained by mark distribution mutual information analysis are used for feature weighting. In addition, a sparse normal form is used for selecting common features with high classification capability in the whole marking space, and the robustness of the algorithm is improved. 本发明涉及一种多标记数据的特征选择方法、终端设备及存储介质,该方法中包括:采用最大熵模型构建用于特征选择的目标函数;通过对目标函数进行求解,得到特征空间中各特征对应的映射参数的大小;基于映射参数的大小进行特征选择。本发明利用标记间的线性相关性在输出空间上构建它们所共享的类属特征关系,并使用标记分布互</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231229&amp;DB=EPODOC&amp;CC=CN&amp;NR=117312789A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25568,76551</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231229&amp;DB=EPODOC&amp;CC=CN&amp;NR=117312789A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIN SHIDONG</creatorcontrib><creatorcontrib>MAO YU</creatorcontrib><creatorcontrib>LIN YAOJIN</creatorcontrib><title>Feature selection method for multi-label data, terminal equipment and storage medium</title><description>The invention relates to a feature selection method for multi-label data, terminal equipment and a storage medium. The method comprises the following steps: constructing a target function for feature selection by adopting a maximum entropy model; solving the target function to obtain the size of a mapping parameter corresponding to each feature in the feature space; and carrying out feature selection based on the mapping parameters. According to the method, a shared generic feature relationship is constructed in an output space by using linear correlation among the marks, and feature weights obtained by mark distribution mutual information analysis are used for feature weighting. In addition, a sparse normal form is used for selecting common features with high classification capability in the whole marking space, and the robustness of the algorithm is improved. 本发明涉及一种多标记数据的特征选择方法、终端设备及存储介质,该方法中包括:采用最大熵模型构建用于特征选择的目标函数;通过对目标函数进行求解,得到特征空间中各特征对应的映射参数的大小;基于映射参数的大小进行特征选择。本发明利用标记间的线性相关性在输出空间上构建它们所共享的类属特征关系,并使用标记分布互</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy60OwjAUhuEaBAHu4eCZKBMDSRYWFGp-OazfoEn_aE_vHwQXgHrN867VOIClZlCBwyw2BvKQVzS0xEy-OrGN4wccGRY-kCB7G9gR3tUmjyDEwVCRmPmJ72ts9Vu1WtgV7H7dqP1wHftbgxQnlMQzAmTq71p3rT52p_Ol_cd8AJu-ON4</recordid><startdate>20231229</startdate><enddate>20231229</enddate><creator>LIN SHIDONG</creator><creator>MAO YU</creator><creator>LIN YAOJIN</creator><scope>EVB</scope></search><sort><creationdate>20231229</creationdate><title>Feature selection method for multi-label data, terminal equipment and storage medium</title><author>LIN SHIDONG ; MAO YU ; LIN YAOJIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117312789A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIN SHIDONG</creatorcontrib><creatorcontrib>MAO YU</creatorcontrib><creatorcontrib>LIN YAOJIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIN SHIDONG</au><au>MAO YU</au><au>LIN YAOJIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Feature selection method for multi-label data, terminal equipment and storage medium</title><date>2023-12-29</date><risdate>2023</risdate><abstract>The invention relates to a feature selection method for multi-label data, terminal equipment and a storage medium. The method comprises the following steps: constructing a target function for feature selection by adopting a maximum entropy model; solving the target function to obtain the size of a mapping parameter corresponding to each feature in the feature space; and carrying out feature selection based on the mapping parameters. According to the method, a shared generic feature relationship is constructed in an output space by using linear correlation among the marks, and feature weights obtained by mark distribution mutual information analysis are used for feature weighting. In addition, a sparse normal form is used for selecting common features with high classification capability in the whole marking space, and the robustness of the algorithm is improved. 本发明涉及一种多标记数据的特征选择方法、终端设备及存储介质,该方法中包括:采用最大熵模型构建用于特征选择的目标函数;通过对目标函数进行求解,得到特征空间中各特征对应的映射参数的大小;基于映射参数的大小进行特征选择。本发明利用标记间的线性相关性在输出空间上构建它们所共享的类属特征关系,并使用标记分布互</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117312789A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Feature selection method for multi-label data, terminal equipment and storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIN%20SHIDONG&rft.date=2023-12-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117312789A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true