User dynamic interest recommendation method and system based on recurrent neural network
The invention relates to a user dynamic interest recommendation method and system based on a recurrent neural network, and belongs to the technical field of recommendation. The system comprises a data preprocessing module, an embedding module, a periodic interaction module, a multi-interest extracti...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CAO KERUI XIE SHAOCI WANG YAJIANG DAI WENXIONG MA YUBO LIAO YONGJIE |
description | The invention relates to a user dynamic interest recommendation method and system based on a recurrent neural network, and belongs to the technical field of recommendation. The system comprises a data preprocessing module, an embedding module, a periodic interaction module, a multi-interest extraction module and an interest evolution module. The data preprocessing module obtains historical interaction item data of a user to form a historical interaction item sequence of the user; the embedding module converts a high-dimensional sparse feature vector into a low-dimensional dense feature vector; the periodic interaction module brings periodic information into interest representation of a user, and designs a graphic structure to capture global and local interactivity between projects; the multi-interest extraction module extracts multiple interests from the user sequence based on a self-attention method; the interest evolution module uses the AUGRU to capture an interest evolution process associated with the tar |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117312668A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117312668A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117312668A3</originalsourceid><addsrcrecordid>eNqNyjEKwkAQRuE0FqLeYTyARQxEWwmKlZWCXRizv7iYnQ2zEyS3dwsPYPWK982L-y1ByU3CwXfkxaBIRoouhgBxbD4KBdgrOmJxlKZkCPTgBEd5ZTmqQowEo3KfY5-o72Uxe3KfsPp1UaxPx2tz3mCILdLAHbJsm0tZ7qpyW9f7Q_WP-QL_DjsM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>User dynamic interest recommendation method and system based on recurrent neural network</title><source>esp@cenet</source><creator>CAO KERUI ; XIE SHAOCI ; WANG YAJIANG ; DAI WENXIONG ; MA YUBO ; LIAO YONGJIE</creator><creatorcontrib>CAO KERUI ; XIE SHAOCI ; WANG YAJIANG ; DAI WENXIONG ; MA YUBO ; LIAO YONGJIE</creatorcontrib><description>The invention relates to a user dynamic interest recommendation method and system based on a recurrent neural network, and belongs to the technical field of recommendation. The system comprises a data preprocessing module, an embedding module, a periodic interaction module, a multi-interest extraction module and an interest evolution module. The data preprocessing module obtains historical interaction item data of a user to form a historical interaction item sequence of the user; the embedding module converts a high-dimensional sparse feature vector into a low-dimensional dense feature vector; the periodic interaction module brings periodic information into interest representation of a user, and designs a graphic structure to capture global and local interactivity between projects; the multi-interest extraction module extracts multiple interests from the user sequence based on a self-attention method; the interest evolution module uses the AUGRU to capture an interest evolution process associated with the tar</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231229&DB=EPODOC&CC=CN&NR=117312668A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231229&DB=EPODOC&CC=CN&NR=117312668A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CAO KERUI</creatorcontrib><creatorcontrib>XIE SHAOCI</creatorcontrib><creatorcontrib>WANG YAJIANG</creatorcontrib><creatorcontrib>DAI WENXIONG</creatorcontrib><creatorcontrib>MA YUBO</creatorcontrib><creatorcontrib>LIAO YONGJIE</creatorcontrib><title>User dynamic interest recommendation method and system based on recurrent neural network</title><description>The invention relates to a user dynamic interest recommendation method and system based on a recurrent neural network, and belongs to the technical field of recommendation. The system comprises a data preprocessing module, an embedding module, a periodic interaction module, a multi-interest extraction module and an interest evolution module. The data preprocessing module obtains historical interaction item data of a user to form a historical interaction item sequence of the user; the embedding module converts a high-dimensional sparse feature vector into a low-dimensional dense feature vector; the periodic interaction module brings periodic information into interest representation of a user, and designs a graphic structure to capture global and local interactivity between projects; the multi-interest extraction module extracts multiple interests from the user sequence based on a self-attention method; the interest evolution module uses the AUGRU to capture an interest evolution process associated with the tar</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwkAQRuE0FqLeYTyARQxEWwmKlZWCXRizv7iYnQ2zEyS3dwsPYPWK982L-y1ByU3CwXfkxaBIRoouhgBxbD4KBdgrOmJxlKZkCPTgBEd5ZTmqQowEo3KfY5-o72Uxe3KfsPp1UaxPx2tz3mCILdLAHbJsm0tZ7qpyW9f7Q_WP-QL_DjsM</recordid><startdate>20231229</startdate><enddate>20231229</enddate><creator>CAO KERUI</creator><creator>XIE SHAOCI</creator><creator>WANG YAJIANG</creator><creator>DAI WENXIONG</creator><creator>MA YUBO</creator><creator>LIAO YONGJIE</creator><scope>EVB</scope></search><sort><creationdate>20231229</creationdate><title>User dynamic interest recommendation method and system based on recurrent neural network</title><author>CAO KERUI ; XIE SHAOCI ; WANG YAJIANG ; DAI WENXIONG ; MA YUBO ; LIAO YONGJIE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117312668A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CAO KERUI</creatorcontrib><creatorcontrib>XIE SHAOCI</creatorcontrib><creatorcontrib>WANG YAJIANG</creatorcontrib><creatorcontrib>DAI WENXIONG</creatorcontrib><creatorcontrib>MA YUBO</creatorcontrib><creatorcontrib>LIAO YONGJIE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CAO KERUI</au><au>XIE SHAOCI</au><au>WANG YAJIANG</au><au>DAI WENXIONG</au><au>MA YUBO</au><au>LIAO YONGJIE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>User dynamic interest recommendation method and system based on recurrent neural network</title><date>2023-12-29</date><risdate>2023</risdate><abstract>The invention relates to a user dynamic interest recommendation method and system based on a recurrent neural network, and belongs to the technical field of recommendation. The system comprises a data preprocessing module, an embedding module, a periodic interaction module, a multi-interest extraction module and an interest evolution module. The data preprocessing module obtains historical interaction item data of a user to form a historical interaction item sequence of the user; the embedding module converts a high-dimensional sparse feature vector into a low-dimensional dense feature vector; the periodic interaction module brings periodic information into interest representation of a user, and designs a graphic structure to capture global and local interactivity between projects; the multi-interest extraction module extracts multiple interests from the user sequence based on a self-attention method; the interest evolution module uses the AUGRU to capture an interest evolution process associated with the tar</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117312668A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | User dynamic interest recommendation method and system based on recurrent neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CAO%20KERUI&rft.date=2023-12-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117312668A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |