User dynamic interest recommendation method and system based on recurrent neural network

The invention relates to a user dynamic interest recommendation method and system based on a recurrent neural network, and belongs to the technical field of recommendation. The system comprises a data preprocessing module, an embedding module, a periodic interaction module, a multi-interest extracti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CAO KERUI, XIE SHAOCI, WANG YAJIANG, DAI WENXIONG, MA YUBO, LIAO YONGJIE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CAO KERUI
XIE SHAOCI
WANG YAJIANG
DAI WENXIONG
MA YUBO
LIAO YONGJIE
description The invention relates to a user dynamic interest recommendation method and system based on a recurrent neural network, and belongs to the technical field of recommendation. The system comprises a data preprocessing module, an embedding module, a periodic interaction module, a multi-interest extraction module and an interest evolution module. The data preprocessing module obtains historical interaction item data of a user to form a historical interaction item sequence of the user; the embedding module converts a high-dimensional sparse feature vector into a low-dimensional dense feature vector; the periodic interaction module brings periodic information into interest representation of a user, and designs a graphic structure to capture global and local interactivity between projects; the multi-interest extraction module extracts multiple interests from the user sequence based on a self-attention method; the interest evolution module uses the AUGRU to capture an interest evolution process associated with the tar
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117312668A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117312668A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117312668A3</originalsourceid><addsrcrecordid>eNqNyjEKwkAQRuE0FqLeYTyARQxEWwmKlZWCXRizv7iYnQ2zEyS3dwsPYPWK982L-y1ByU3CwXfkxaBIRoouhgBxbD4KBdgrOmJxlKZkCPTgBEd5ZTmqQowEo3KfY5-o72Uxe3KfsPp1UaxPx2tz3mCILdLAHbJsm0tZ7qpyW9f7Q_WP-QL_DjsM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>User dynamic interest recommendation method and system based on recurrent neural network</title><source>esp@cenet</source><creator>CAO KERUI ; XIE SHAOCI ; WANG YAJIANG ; DAI WENXIONG ; MA YUBO ; LIAO YONGJIE</creator><creatorcontrib>CAO KERUI ; XIE SHAOCI ; WANG YAJIANG ; DAI WENXIONG ; MA YUBO ; LIAO YONGJIE</creatorcontrib><description>The invention relates to a user dynamic interest recommendation method and system based on a recurrent neural network, and belongs to the technical field of recommendation. The system comprises a data preprocessing module, an embedding module, a periodic interaction module, a multi-interest extraction module and an interest evolution module. The data preprocessing module obtains historical interaction item data of a user to form a historical interaction item sequence of the user; the embedding module converts a high-dimensional sparse feature vector into a low-dimensional dense feature vector; the periodic interaction module brings periodic information into interest representation of a user, and designs a graphic structure to capture global and local interactivity between projects; the multi-interest extraction module extracts multiple interests from the user sequence based on a self-attention method; the interest evolution module uses the AUGRU to capture an interest evolution process associated with the tar</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231229&amp;DB=EPODOC&amp;CC=CN&amp;NR=117312668A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231229&amp;DB=EPODOC&amp;CC=CN&amp;NR=117312668A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CAO KERUI</creatorcontrib><creatorcontrib>XIE SHAOCI</creatorcontrib><creatorcontrib>WANG YAJIANG</creatorcontrib><creatorcontrib>DAI WENXIONG</creatorcontrib><creatorcontrib>MA YUBO</creatorcontrib><creatorcontrib>LIAO YONGJIE</creatorcontrib><title>User dynamic interest recommendation method and system based on recurrent neural network</title><description>The invention relates to a user dynamic interest recommendation method and system based on a recurrent neural network, and belongs to the technical field of recommendation. The system comprises a data preprocessing module, an embedding module, a periodic interaction module, a multi-interest extraction module and an interest evolution module. The data preprocessing module obtains historical interaction item data of a user to form a historical interaction item sequence of the user; the embedding module converts a high-dimensional sparse feature vector into a low-dimensional dense feature vector; the periodic interaction module brings periodic information into interest representation of a user, and designs a graphic structure to capture global and local interactivity between projects; the multi-interest extraction module extracts multiple interests from the user sequence based on a self-attention method; the interest evolution module uses the AUGRU to capture an interest evolution process associated with the tar</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwkAQRuE0FqLeYTyARQxEWwmKlZWCXRizv7iYnQ2zEyS3dwsPYPWK982L-y1ByU3CwXfkxaBIRoouhgBxbD4KBdgrOmJxlKZkCPTgBEd5ZTmqQowEo3KfY5-o72Uxe3KfsPp1UaxPx2tz3mCILdLAHbJsm0tZ7qpyW9f7Q_WP-QL_DjsM</recordid><startdate>20231229</startdate><enddate>20231229</enddate><creator>CAO KERUI</creator><creator>XIE SHAOCI</creator><creator>WANG YAJIANG</creator><creator>DAI WENXIONG</creator><creator>MA YUBO</creator><creator>LIAO YONGJIE</creator><scope>EVB</scope></search><sort><creationdate>20231229</creationdate><title>User dynamic interest recommendation method and system based on recurrent neural network</title><author>CAO KERUI ; XIE SHAOCI ; WANG YAJIANG ; DAI WENXIONG ; MA YUBO ; LIAO YONGJIE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117312668A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CAO KERUI</creatorcontrib><creatorcontrib>XIE SHAOCI</creatorcontrib><creatorcontrib>WANG YAJIANG</creatorcontrib><creatorcontrib>DAI WENXIONG</creatorcontrib><creatorcontrib>MA YUBO</creatorcontrib><creatorcontrib>LIAO YONGJIE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CAO KERUI</au><au>XIE SHAOCI</au><au>WANG YAJIANG</au><au>DAI WENXIONG</au><au>MA YUBO</au><au>LIAO YONGJIE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>User dynamic interest recommendation method and system based on recurrent neural network</title><date>2023-12-29</date><risdate>2023</risdate><abstract>The invention relates to a user dynamic interest recommendation method and system based on a recurrent neural network, and belongs to the technical field of recommendation. The system comprises a data preprocessing module, an embedding module, a periodic interaction module, a multi-interest extraction module and an interest evolution module. The data preprocessing module obtains historical interaction item data of a user to form a historical interaction item sequence of the user; the embedding module converts a high-dimensional sparse feature vector into a low-dimensional dense feature vector; the periodic interaction module brings periodic information into interest representation of a user, and designs a graphic structure to capture global and local interactivity between projects; the multi-interest extraction module extracts multiple interests from the user sequence based on a self-attention method; the interest evolution module uses the AUGRU to capture an interest evolution process associated with the tar</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117312668A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title User dynamic interest recommendation method and system based on recurrent neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CAO%20KERUI&rft.date=2023-12-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117312668A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true