Function code evaluation method and device based on neural network
The invention discloses a function code evaluation method and device based on a neural network. The method comprises the following steps: acquiring a target code snippet from a standard code for realizing a specific function, and acquiring a sample code snippet from a realization code of a correspon...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | DING TAO HAN DAN ZHANG HONG CHEN XUBAO LI LEI |
description | The invention discloses a function code evaluation method and device based on a neural network. The method comprises the following steps: acquiring a target code snippet from a standard code for realizing a specific function, and acquiring a sample code snippet from a realization code of a corresponding function written by research and development personnel; through the same feature extraction algorithm, feature data of program capacity and key program elements in the code snippets are extracted to form seven-dimensional feature vectors, and tag feature vectors and sample feature vectors are correspondingly obtained after normalization processing; for the constructed neural network model, using a label feature vector as a label value, and using a large number of sample feature vectors as input data for training; and evaluating the probability that the to-be-tested code can realize the corresponding function by using the trained neural network model. According to the method, the digitalization and characteriza |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117272328A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117272328A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117272328A3</originalsourceid><addsrcrecordid>eNrjZHByK81LLsnMz1NIzk9JVUgtS8wpTQTzc1NLMvJTFBLzUhRSUssyk1MVkhKLU1MUgFJ5qaVFiTlAqqQ8vyibh4E1LTGnOJUXSnMzKLq5hjh76KYW5MenFhckJqcCVcY7-xkamhuZGxkbWTgaE6MGADTUMfU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Function code evaluation method and device based on neural network</title><source>esp@cenet</source><creator>DING TAO ; HAN DAN ; ZHANG HONG ; CHEN XUBAO ; LI LEI</creator><creatorcontrib>DING TAO ; HAN DAN ; ZHANG HONG ; CHEN XUBAO ; LI LEI</creatorcontrib><description>The invention discloses a function code evaluation method and device based on a neural network. The method comprises the following steps: acquiring a target code snippet from a standard code for realizing a specific function, and acquiring a sample code snippet from a realization code of a corresponding function written by research and development personnel; through the same feature extraction algorithm, feature data of program capacity and key program elements in the code snippets are extracted to form seven-dimensional feature vectors, and tag feature vectors and sample feature vectors are correspondingly obtained after normalization processing; for the constructed neural network model, using a label feature vector as a label value, and using a large number of sample feature vectors as input data for training; and evaluating the probability that the to-be-tested code can realize the corresponding function by using the trained neural network model. According to the method, the digitalization and characteriza</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231222&DB=EPODOC&CC=CN&NR=117272328A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231222&DB=EPODOC&CC=CN&NR=117272328A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DING TAO</creatorcontrib><creatorcontrib>HAN DAN</creatorcontrib><creatorcontrib>ZHANG HONG</creatorcontrib><creatorcontrib>CHEN XUBAO</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><title>Function code evaluation method and device based on neural network</title><description>The invention discloses a function code evaluation method and device based on a neural network. The method comprises the following steps: acquiring a target code snippet from a standard code for realizing a specific function, and acquiring a sample code snippet from a realization code of a corresponding function written by research and development personnel; through the same feature extraction algorithm, feature data of program capacity and key program elements in the code snippets are extracted to form seven-dimensional feature vectors, and tag feature vectors and sample feature vectors are correspondingly obtained after normalization processing; for the constructed neural network model, using a label feature vector as a label value, and using a large number of sample feature vectors as input data for training; and evaluating the probability that the to-be-tested code can realize the corresponding function by using the trained neural network model. According to the method, the digitalization and characteriza</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHByK81LLsnMz1NIzk9JVUgtS8wpTQTzc1NLMvJTFBLzUhRSUssyk1MVkhKLU1MUgFJ5qaVFiTlAqqQ8vyibh4E1LTGnOJUXSnMzKLq5hjh76KYW5MenFhckJqcCVcY7-xkamhuZGxkbWTgaE6MGADTUMfU</recordid><startdate>20231222</startdate><enddate>20231222</enddate><creator>DING TAO</creator><creator>HAN DAN</creator><creator>ZHANG HONG</creator><creator>CHEN XUBAO</creator><creator>LI LEI</creator><scope>EVB</scope></search><sort><creationdate>20231222</creationdate><title>Function code evaluation method and device based on neural network</title><author>DING TAO ; HAN DAN ; ZHANG HONG ; CHEN XUBAO ; LI LEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117272328A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DING TAO</creatorcontrib><creatorcontrib>HAN DAN</creatorcontrib><creatorcontrib>ZHANG HONG</creatorcontrib><creatorcontrib>CHEN XUBAO</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DING TAO</au><au>HAN DAN</au><au>ZHANG HONG</au><au>CHEN XUBAO</au><au>LI LEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Function code evaluation method and device based on neural network</title><date>2023-12-22</date><risdate>2023</risdate><abstract>The invention discloses a function code evaluation method and device based on a neural network. The method comprises the following steps: acquiring a target code snippet from a standard code for realizing a specific function, and acquiring a sample code snippet from a realization code of a corresponding function written by research and development personnel; through the same feature extraction algorithm, feature data of program capacity and key program elements in the code snippets are extracted to form seven-dimensional feature vectors, and tag feature vectors and sample feature vectors are correspondingly obtained after normalization processing; for the constructed neural network model, using a label feature vector as a label value, and using a large number of sample feature vectors as input data for training; and evaluating the probability that the to-be-tested code can realize the corresponding function by using the trained neural network model. According to the method, the digitalization and characteriza</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117272328A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Function code evaluation method and device based on neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DING%20TAO&rft.date=2023-12-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117272328A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |