Social robot detection model and method based on graph contrast learning
The invention belongs to the technical field of social robot detection, and particularly relates to a social robot detection model and method based on graph comparative learning, and the model comprises an information coding module, a data enhancement module, a comparative learning module and a node...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | GONG DAOFU ZHOU HAN LI ZHENYU ZHOU ZHENYU LI YAN ZOU WEI ZHOU CHUNHUA LIU FENLIN HU QIAN |
description | The invention belongs to the technical field of social robot detection, and particularly relates to a social robot detection model and method based on graph comparative learning, and the model comprises an information coding module, a data enhancement module, a comparative learning module and a node classification module. The information coding module constructs a social relation topological graph, and carries out vectorization operation on semantic features and attribute features of accounts to obtain initial representation vectors of nodes; the data enhancement module is used for augmenting the constructed social relation topological graph through a plurality of data enhancement modes to generate a plurality of views conforming to original data distribution; the contrast learning module encodes the plurality of augmented views by using a graph neural network, and obtains node representation with the maximum convergence through minimizing contrast loss; and the node classification module predicts a node labe |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117271885A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117271885A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117271885A3</originalsourceid><addsrcrecordid>eNqNyjEOwjAMQNEsDAi4gzkAQ0CoXasK1IkF9sqNTRsptaPE9xcMHIDpD-9v3fDUEDFB0UkNiI2DRRVYlTgBCsHKtijBhJUJvjIXzAsEFStYDRJjkSjz3m3emCofft254_326ocTZx25ZgwsbGP_8L45N75tr93ln-cDjAQ0MA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Social robot detection model and method based on graph contrast learning</title><source>esp@cenet</source><creator>GONG DAOFU ; ZHOU HAN ; LI ZHENYU ; ZHOU ZHENYU ; LI YAN ; ZOU WEI ; ZHOU CHUNHUA ; LIU FENLIN ; HU QIAN</creator><creatorcontrib>GONG DAOFU ; ZHOU HAN ; LI ZHENYU ; ZHOU ZHENYU ; LI YAN ; ZOU WEI ; ZHOU CHUNHUA ; LIU FENLIN ; HU QIAN</creatorcontrib><description>The invention belongs to the technical field of social robot detection, and particularly relates to a social robot detection model and method based on graph comparative learning, and the model comprises an information coding module, a data enhancement module, a comparative learning module and a node classification module. The information coding module constructs a social relation topological graph, and carries out vectorization operation on semantic features and attribute features of accounts to obtain initial representation vectors of nodes; the data enhancement module is used for augmenting the constructed social relation topological graph through a plurality of data enhancement modes to generate a plurality of views conforming to original data distribution; the contrast learning module encodes the plurality of augmented views by using a graph neural network, and obtains node representation with the maximum convergence through minimizing contrast loss; and the node classification module predicts a node labe</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231222&DB=EPODOC&CC=CN&NR=117271885A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231222&DB=EPODOC&CC=CN&NR=117271885A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GONG DAOFU</creatorcontrib><creatorcontrib>ZHOU HAN</creatorcontrib><creatorcontrib>LI ZHENYU</creatorcontrib><creatorcontrib>ZHOU ZHENYU</creatorcontrib><creatorcontrib>LI YAN</creatorcontrib><creatorcontrib>ZOU WEI</creatorcontrib><creatorcontrib>ZHOU CHUNHUA</creatorcontrib><creatorcontrib>LIU FENLIN</creatorcontrib><creatorcontrib>HU QIAN</creatorcontrib><title>Social robot detection model and method based on graph contrast learning</title><description>The invention belongs to the technical field of social robot detection, and particularly relates to a social robot detection model and method based on graph comparative learning, and the model comprises an information coding module, a data enhancement module, a comparative learning module and a node classification module. The information coding module constructs a social relation topological graph, and carries out vectorization operation on semantic features and attribute features of accounts to obtain initial representation vectors of nodes; the data enhancement module is used for augmenting the constructed social relation topological graph through a plurality of data enhancement modes to generate a plurality of views conforming to original data distribution; the contrast learning module encodes the plurality of augmented views by using a graph neural network, and obtains node representation with the maximum convergence through minimizing contrast loss; and the node classification module predicts a node labe</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMQNEsDAi4gzkAQ0CoXasK1IkF9sqNTRsptaPE9xcMHIDpD-9v3fDUEDFB0UkNiI2DRRVYlTgBCsHKtijBhJUJvjIXzAsEFStYDRJjkSjz3m3emCofft254_326ocTZx25ZgwsbGP_8L45N75tr93ln-cDjAQ0MA</recordid><startdate>20231222</startdate><enddate>20231222</enddate><creator>GONG DAOFU</creator><creator>ZHOU HAN</creator><creator>LI ZHENYU</creator><creator>ZHOU ZHENYU</creator><creator>LI YAN</creator><creator>ZOU WEI</creator><creator>ZHOU CHUNHUA</creator><creator>LIU FENLIN</creator><creator>HU QIAN</creator><scope>EVB</scope></search><sort><creationdate>20231222</creationdate><title>Social robot detection model and method based on graph contrast learning</title><author>GONG DAOFU ; ZHOU HAN ; LI ZHENYU ; ZHOU ZHENYU ; LI YAN ; ZOU WEI ; ZHOU CHUNHUA ; LIU FENLIN ; HU QIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117271885A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GONG DAOFU</creatorcontrib><creatorcontrib>ZHOU HAN</creatorcontrib><creatorcontrib>LI ZHENYU</creatorcontrib><creatorcontrib>ZHOU ZHENYU</creatorcontrib><creatorcontrib>LI YAN</creatorcontrib><creatorcontrib>ZOU WEI</creatorcontrib><creatorcontrib>ZHOU CHUNHUA</creatorcontrib><creatorcontrib>LIU FENLIN</creatorcontrib><creatorcontrib>HU QIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GONG DAOFU</au><au>ZHOU HAN</au><au>LI ZHENYU</au><au>ZHOU ZHENYU</au><au>LI YAN</au><au>ZOU WEI</au><au>ZHOU CHUNHUA</au><au>LIU FENLIN</au><au>HU QIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Social robot detection model and method based on graph contrast learning</title><date>2023-12-22</date><risdate>2023</risdate><abstract>The invention belongs to the technical field of social robot detection, and particularly relates to a social robot detection model and method based on graph comparative learning, and the model comprises an information coding module, a data enhancement module, a comparative learning module and a node classification module. The information coding module constructs a social relation topological graph, and carries out vectorization operation on semantic features and attribute features of accounts to obtain initial representation vectors of nodes; the data enhancement module is used for augmenting the constructed social relation topological graph through a plurality of data enhancement modes to generate a plurality of views conforming to original data distribution; the contrast learning module encodes the plurality of augmented views by using a graph neural network, and obtains node representation with the maximum convergence through minimizing contrast loss; and the node classification module predicts a node labe</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117271885A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Social robot detection model and method based on graph contrast learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GONG%20DAOFU&rft.date=2023-12-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117271885A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |