Social robot detection model and method based on graph contrast learning

The invention belongs to the technical field of social robot detection, and particularly relates to a social robot detection model and method based on graph comparative learning, and the model comprises an information coding module, a data enhancement module, a comparative learning module and a node...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GONG DAOFU, ZHOU HAN, LI ZHENYU, ZHOU ZHENYU, LI YAN, ZOU WEI, ZHOU CHUNHUA, LIU FENLIN, HU QIAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GONG DAOFU
ZHOU HAN
LI ZHENYU
ZHOU ZHENYU
LI YAN
ZOU WEI
ZHOU CHUNHUA
LIU FENLIN
HU QIAN
description The invention belongs to the technical field of social robot detection, and particularly relates to a social robot detection model and method based on graph comparative learning, and the model comprises an information coding module, a data enhancement module, a comparative learning module and a node classification module. The information coding module constructs a social relation topological graph, and carries out vectorization operation on semantic features and attribute features of accounts to obtain initial representation vectors of nodes; the data enhancement module is used for augmenting the constructed social relation topological graph through a plurality of data enhancement modes to generate a plurality of views conforming to original data distribution; the contrast learning module encodes the plurality of augmented views by using a graph neural network, and obtains node representation with the maximum convergence through minimizing contrast loss; and the node classification module predicts a node labe
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117271885A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117271885A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117271885A3</originalsourceid><addsrcrecordid>eNqNyjEOwjAMQNEsDAi4gzkAQ0CoXasK1IkF9sqNTRsptaPE9xcMHIDpD-9v3fDUEDFB0UkNiI2DRRVYlTgBCsHKtijBhJUJvjIXzAsEFStYDRJjkSjz3m3emCofft254_326ocTZx25ZgwsbGP_8L45N75tr93ln-cDjAQ0MA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Social robot detection model and method based on graph contrast learning</title><source>esp@cenet</source><creator>GONG DAOFU ; ZHOU HAN ; LI ZHENYU ; ZHOU ZHENYU ; LI YAN ; ZOU WEI ; ZHOU CHUNHUA ; LIU FENLIN ; HU QIAN</creator><creatorcontrib>GONG DAOFU ; ZHOU HAN ; LI ZHENYU ; ZHOU ZHENYU ; LI YAN ; ZOU WEI ; ZHOU CHUNHUA ; LIU FENLIN ; HU QIAN</creatorcontrib><description>The invention belongs to the technical field of social robot detection, and particularly relates to a social robot detection model and method based on graph comparative learning, and the model comprises an information coding module, a data enhancement module, a comparative learning module and a node classification module. The information coding module constructs a social relation topological graph, and carries out vectorization operation on semantic features and attribute features of accounts to obtain initial representation vectors of nodes; the data enhancement module is used for augmenting the constructed social relation topological graph through a plurality of data enhancement modes to generate a plurality of views conforming to original data distribution; the contrast learning module encodes the plurality of augmented views by using a graph neural network, and obtains node representation with the maximum convergence through minimizing contrast loss; and the node classification module predicts a node labe</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231222&amp;DB=EPODOC&amp;CC=CN&amp;NR=117271885A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231222&amp;DB=EPODOC&amp;CC=CN&amp;NR=117271885A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GONG DAOFU</creatorcontrib><creatorcontrib>ZHOU HAN</creatorcontrib><creatorcontrib>LI ZHENYU</creatorcontrib><creatorcontrib>ZHOU ZHENYU</creatorcontrib><creatorcontrib>LI YAN</creatorcontrib><creatorcontrib>ZOU WEI</creatorcontrib><creatorcontrib>ZHOU CHUNHUA</creatorcontrib><creatorcontrib>LIU FENLIN</creatorcontrib><creatorcontrib>HU QIAN</creatorcontrib><title>Social robot detection model and method based on graph contrast learning</title><description>The invention belongs to the technical field of social robot detection, and particularly relates to a social robot detection model and method based on graph comparative learning, and the model comprises an information coding module, a data enhancement module, a comparative learning module and a node classification module. The information coding module constructs a social relation topological graph, and carries out vectorization operation on semantic features and attribute features of accounts to obtain initial representation vectors of nodes; the data enhancement module is used for augmenting the constructed social relation topological graph through a plurality of data enhancement modes to generate a plurality of views conforming to original data distribution; the contrast learning module encodes the plurality of augmented views by using a graph neural network, and obtains node representation with the maximum convergence through minimizing contrast loss; and the node classification module predicts a node labe</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMQNEsDAi4gzkAQ0CoXasK1IkF9sqNTRsptaPE9xcMHIDpD-9v3fDUEDFB0UkNiI2DRRVYlTgBCsHKtijBhJUJvjIXzAsEFStYDRJjkSjz3m3emCofft254_326ocTZx25ZgwsbGP_8L45N75tr93ln-cDjAQ0MA</recordid><startdate>20231222</startdate><enddate>20231222</enddate><creator>GONG DAOFU</creator><creator>ZHOU HAN</creator><creator>LI ZHENYU</creator><creator>ZHOU ZHENYU</creator><creator>LI YAN</creator><creator>ZOU WEI</creator><creator>ZHOU CHUNHUA</creator><creator>LIU FENLIN</creator><creator>HU QIAN</creator><scope>EVB</scope></search><sort><creationdate>20231222</creationdate><title>Social robot detection model and method based on graph contrast learning</title><author>GONG DAOFU ; ZHOU HAN ; LI ZHENYU ; ZHOU ZHENYU ; LI YAN ; ZOU WEI ; ZHOU CHUNHUA ; LIU FENLIN ; HU QIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117271885A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GONG DAOFU</creatorcontrib><creatorcontrib>ZHOU HAN</creatorcontrib><creatorcontrib>LI ZHENYU</creatorcontrib><creatorcontrib>ZHOU ZHENYU</creatorcontrib><creatorcontrib>LI YAN</creatorcontrib><creatorcontrib>ZOU WEI</creatorcontrib><creatorcontrib>ZHOU CHUNHUA</creatorcontrib><creatorcontrib>LIU FENLIN</creatorcontrib><creatorcontrib>HU QIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GONG DAOFU</au><au>ZHOU HAN</au><au>LI ZHENYU</au><au>ZHOU ZHENYU</au><au>LI YAN</au><au>ZOU WEI</au><au>ZHOU CHUNHUA</au><au>LIU FENLIN</au><au>HU QIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Social robot detection model and method based on graph contrast learning</title><date>2023-12-22</date><risdate>2023</risdate><abstract>The invention belongs to the technical field of social robot detection, and particularly relates to a social robot detection model and method based on graph comparative learning, and the model comprises an information coding module, a data enhancement module, a comparative learning module and a node classification module. The information coding module constructs a social relation topological graph, and carries out vectorization operation on semantic features and attribute features of accounts to obtain initial representation vectors of nodes; the data enhancement module is used for augmenting the constructed social relation topological graph through a plurality of data enhancement modes to generate a plurality of views conforming to original data distribution; the contrast learning module encodes the plurality of augmented views by using a graph neural network, and obtains node representation with the maximum convergence through minimizing contrast loss; and the node classification module predicts a node labe</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117271885A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Social robot detection model and method based on graph contrast learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GONG%20DAOFU&rft.date=2023-12-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117271885A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true