Multi-scale clustering method based on diffusion equation
The invention relates to the technical field of clustering, in particular to a multi-scale clustering method based on a diffusion equation. Randomly selecting k points in a data set which can be divided into k clusters as central points of the k clusters; dividing other points into k clusters; calcu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIU SHUZHOU LIU PINGJIE SHE KUN YU YUE |
description | The invention relates to the technical field of clustering, in particular to a multi-scale clustering method based on a diffusion equation. Randomly selecting k points in a data set which can be divided into k clusters as central points of the k clusters; dividing other points into k clusters; calculating the concentration of the whole system; selecting the maximum Euclidean distance between sample points of the data set as an initial diffusion scale, and generating a Gaussian distribution random number with the expectation of 0 and the variance of 1 by using a Gaussian random number generation function; according to the generated Gaussian distribution random number and the diffusion scale, generating a new center point coordinate according to a center point motion formula, namely performing cluster diffusion; the process is repeated until a preset circulation threshold value is reached; halving the diffusion scale until the diffusion scale is smaller than a preset threshold value; outputting an optimal solut |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117251753A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117251753A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117251753A3</originalsourceid><addsrcrecordid>eNrjZLD0Lc0pydQtTk7MSVVIziktLkktysxLV8hNLcnIT1FISixOTVHIz1NIyUxLKy3OBLJSC0sTS4AMHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oS7-xnaGhuZGpobmrsaEyMGgBanC7q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-scale clustering method based on diffusion equation</title><source>esp@cenet</source><creator>LIU SHUZHOU ; LIU PINGJIE ; SHE KUN ; YU YUE</creator><creatorcontrib>LIU SHUZHOU ; LIU PINGJIE ; SHE KUN ; YU YUE</creatorcontrib><description>The invention relates to the technical field of clustering, in particular to a multi-scale clustering method based on a diffusion equation. Randomly selecting k points in a data set which can be divided into k clusters as central points of the k clusters; dividing other points into k clusters; calculating the concentration of the whole system; selecting the maximum Euclidean distance between sample points of the data set as an initial diffusion scale, and generating a Gaussian distribution random number with the expectation of 0 and the variance of 1 by using a Gaussian random number generation function; according to the generated Gaussian distribution random number and the diffusion scale, generating a new center point coordinate according to a center point motion formula, namely performing cluster diffusion; the process is repeated until a preset circulation threshold value is reached; halving the diffusion scale until the diffusion scale is smaller than a preset threshold value; outputting an optimal solut</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231219&DB=EPODOC&CC=CN&NR=117251753A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231219&DB=EPODOC&CC=CN&NR=117251753A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU SHUZHOU</creatorcontrib><creatorcontrib>LIU PINGJIE</creatorcontrib><creatorcontrib>SHE KUN</creatorcontrib><creatorcontrib>YU YUE</creatorcontrib><title>Multi-scale clustering method based on diffusion equation</title><description>The invention relates to the technical field of clustering, in particular to a multi-scale clustering method based on a diffusion equation. Randomly selecting k points in a data set which can be divided into k clusters as central points of the k clusters; dividing other points into k clusters; calculating the concentration of the whole system; selecting the maximum Euclidean distance between sample points of the data set as an initial diffusion scale, and generating a Gaussian distribution random number with the expectation of 0 and the variance of 1 by using a Gaussian random number generation function; according to the generated Gaussian distribution random number and the diffusion scale, generating a new center point coordinate according to a center point motion formula, namely performing cluster diffusion; the process is repeated until a preset circulation threshold value is reached; halving the diffusion scale until the diffusion scale is smaller than a preset threshold value; outputting an optimal solut</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD0Lc0pydQtTk7MSVVIziktLkktysxLV8hNLcnIT1FISixOTVHIz1NIyUxLKy3OBLJSC0sTS4AMHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oS7-xnaGhuZGpobmrsaEyMGgBanC7q</recordid><startdate>20231219</startdate><enddate>20231219</enddate><creator>LIU SHUZHOU</creator><creator>LIU PINGJIE</creator><creator>SHE KUN</creator><creator>YU YUE</creator><scope>EVB</scope></search><sort><creationdate>20231219</creationdate><title>Multi-scale clustering method based on diffusion equation</title><author>LIU SHUZHOU ; LIU PINGJIE ; SHE KUN ; YU YUE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117251753A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU SHUZHOU</creatorcontrib><creatorcontrib>LIU PINGJIE</creatorcontrib><creatorcontrib>SHE KUN</creatorcontrib><creatorcontrib>YU YUE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU SHUZHOU</au><au>LIU PINGJIE</au><au>SHE KUN</au><au>YU YUE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-scale clustering method based on diffusion equation</title><date>2023-12-19</date><risdate>2023</risdate><abstract>The invention relates to the technical field of clustering, in particular to a multi-scale clustering method based on a diffusion equation. Randomly selecting k points in a data set which can be divided into k clusters as central points of the k clusters; dividing other points into k clusters; calculating the concentration of the whole system; selecting the maximum Euclidean distance between sample points of the data set as an initial diffusion scale, and generating a Gaussian distribution random number with the expectation of 0 and the variance of 1 by using a Gaussian random number generation function; according to the generated Gaussian distribution random number and the diffusion scale, generating a new center point coordinate according to a center point motion formula, namely performing cluster diffusion; the process is repeated until a preset circulation threshold value is reached; halving the diffusion scale until the diffusion scale is smaller than a preset threshold value; outputting an optimal solut</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117251753A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Multi-scale clustering method based on diffusion equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20SHUZHOU&rft.date=2023-12-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117251753A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |