Generative adversarial network prototype correction-based few-sample image classification method and system

The invention discloses a few-sample image classification method and system based on generative adversarial network prototype correction, and the method comprises the steps: dividing a data set into a training set, a verification set and a test set, and obtaining a feature embedded network and an ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CAO RENLONG, FENG SHUAILONG, LUO LIUFEI, YANG ZHAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CAO RENLONG
FENG SHUAILONG
LUO LIUFEI
YANG ZHAO
description The invention discloses a few-sample image classification method and system based on generative adversarial network prototype correction, and the method comprises the steps: dividing a data set into a training set, a verification set and a test set, and obtaining a feature embedded network and an adversarial network through the training of the training set; extracting sample features by using the feature embedded network, correcting the sample features to obtain a pre-corrected category prototype, inputting noise and the pre-corrected category prototype into the adversarial network, generating pseudo sample features, and obtaining a pseudo category prototype; fusing the pseudo category prototype and the pre-corrected category prototype to obtain a secondarily-corrected category prototype, and performing similarity measurement on training set samples to obtain classification loss of the samples for fine tuning of the feature embedded network; verifying the performance of the feature embedding network through t
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117237727A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117237727A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117237727A3</originalsourceid><addsrcrecordid>eNqNzjkOwjAQQNE0FAi4w3AAF0kK1yhiqajoo8GegBVv8owS5fYEiQNQ_eYVf1uNV4pUUNxEgHaiwlgceogkcyoj5JIkyZIJTCqFjLgU1ROZLAw0K8aQPYEL-FqFR2Y3OINfBYHknSxgtMALC4V9tRnQMx1-3VXHy_nR3RTl1BNnNOuL9N29rnXTat3oU_uP-QCaS0Kx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Generative adversarial network prototype correction-based few-sample image classification method and system</title><source>esp@cenet</source><creator>CAO RENLONG ; FENG SHUAILONG ; LUO LIUFEI ; YANG ZHAO</creator><creatorcontrib>CAO RENLONG ; FENG SHUAILONG ; LUO LIUFEI ; YANG ZHAO</creatorcontrib><description>The invention discloses a few-sample image classification method and system based on generative adversarial network prototype correction, and the method comprises the steps: dividing a data set into a training set, a verification set and a test set, and obtaining a feature embedded network and an adversarial network through the training of the training set; extracting sample features by using the feature embedded network, correcting the sample features to obtain a pre-corrected category prototype, inputting noise and the pre-corrected category prototype into the adversarial network, generating pseudo sample features, and obtaining a pseudo category prototype; fusing the pseudo category prototype and the pre-corrected category prototype to obtain a secondarily-corrected category prototype, and performing similarity measurement on training set samples to obtain classification loss of the samples for fine tuning of the feature embedded network; verifying the performance of the feature embedding network through t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231215&amp;DB=EPODOC&amp;CC=CN&amp;NR=117237727A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231215&amp;DB=EPODOC&amp;CC=CN&amp;NR=117237727A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CAO RENLONG</creatorcontrib><creatorcontrib>FENG SHUAILONG</creatorcontrib><creatorcontrib>LUO LIUFEI</creatorcontrib><creatorcontrib>YANG ZHAO</creatorcontrib><title>Generative adversarial network prototype correction-based few-sample image classification method and system</title><description>The invention discloses a few-sample image classification method and system based on generative adversarial network prototype correction, and the method comprises the steps: dividing a data set into a training set, a verification set and a test set, and obtaining a feature embedded network and an adversarial network through the training of the training set; extracting sample features by using the feature embedded network, correcting the sample features to obtain a pre-corrected category prototype, inputting noise and the pre-corrected category prototype into the adversarial network, generating pseudo sample features, and obtaining a pseudo category prototype; fusing the pseudo category prototype and the pre-corrected category prototype to obtain a secondarily-corrected category prototype, and performing similarity measurement on training set samples to obtain classification loss of the samples for fine tuning of the feature embedded network; verifying the performance of the feature embedding network through t</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzjkOwjAQQNE0FAi4w3AAF0kK1yhiqajoo8GegBVv8owS5fYEiQNQ_eYVf1uNV4pUUNxEgHaiwlgceogkcyoj5JIkyZIJTCqFjLgU1ROZLAw0K8aQPYEL-FqFR2Y3OINfBYHknSxgtMALC4V9tRnQMx1-3VXHy_nR3RTl1BNnNOuL9N29rnXTat3oU_uP-QCaS0Kx</recordid><startdate>20231215</startdate><enddate>20231215</enddate><creator>CAO RENLONG</creator><creator>FENG SHUAILONG</creator><creator>LUO LIUFEI</creator><creator>YANG ZHAO</creator><scope>EVB</scope></search><sort><creationdate>20231215</creationdate><title>Generative adversarial network prototype correction-based few-sample image classification method and system</title><author>CAO RENLONG ; FENG SHUAILONG ; LUO LIUFEI ; YANG ZHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117237727A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CAO RENLONG</creatorcontrib><creatorcontrib>FENG SHUAILONG</creatorcontrib><creatorcontrib>LUO LIUFEI</creatorcontrib><creatorcontrib>YANG ZHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CAO RENLONG</au><au>FENG SHUAILONG</au><au>LUO LIUFEI</au><au>YANG ZHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Generative adversarial network prototype correction-based few-sample image classification method and system</title><date>2023-12-15</date><risdate>2023</risdate><abstract>The invention discloses a few-sample image classification method and system based on generative adversarial network prototype correction, and the method comprises the steps: dividing a data set into a training set, a verification set and a test set, and obtaining a feature embedded network and an adversarial network through the training of the training set; extracting sample features by using the feature embedded network, correcting the sample features to obtain a pre-corrected category prototype, inputting noise and the pre-corrected category prototype into the adversarial network, generating pseudo sample features, and obtaining a pseudo category prototype; fusing the pseudo category prototype and the pre-corrected category prototype to obtain a secondarily-corrected category prototype, and performing similarity measurement on training set samples to obtain classification loss of the samples for fine tuning of the feature embedded network; verifying the performance of the feature embedding network through t</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117237727A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Generative adversarial network prototype correction-based few-sample image classification method and system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CAO%20RENLONG&rft.date=2023-12-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117237727A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true