Image processing method, network model training method, equipment and medium

The invention provides an image processing method, a network model training method, electronic equipment and a storage medium, and relates to the technical field of image processing. The image processing method comprises the following steps: extracting semantic features of an obtained input image to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU ZHENG, TANG WEI, FAN SHAOJIE, ZHU BAOHUI, GUO XIN, ZHAO WEI, FEI DONG, YANG HAIBIN, JIA WUCAI, LIU LIN, LUO JING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU ZHENG
TANG WEI
FAN SHAOJIE
ZHU BAOHUI
GUO XIN
ZHAO WEI
FEI DONG
YANG HAIBIN
JIA WUCAI
LIU LIN
LUO JING
description The invention provides an image processing method, a network model training method, electronic equipment and a storage medium, and relates to the technical field of image processing. The image processing method comprises the following steps: extracting semantic features of an obtained input image to obtain a feature map corresponding to the input image; performing position prediction on the feature map corresponding to the input image to obtain a to-be-processed image; performing grid motion prediction on the to-be-processed image based on the residual progressive regression network model to obtain a to-be-matched image; and matching the to-be-matched image with a preset grid to obtain a target image. According to the method, deviation information in a to-be-processed image is adjusted based on a residual error progressive regression network model, the consistency of image content is improved, and abnormalities such as irregular boundaries and picture distortion occurring in image splicing are reduced, so tha
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117237579A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117237579A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117237579A3</originalsourceid><addsrcrecordid>eNrjZPDxzE1MT1UoKMpPTi0uzsxLV8hNLcnIT9FRyEstKc8vylbIzU9JzVEoKUrMzEOWTi0szSzITc0rUUjMSwGKpmSW5vIwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTkVKCp8c5-hobmRsbmpuaWjsbEqAEAoFE15A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Image processing method, network model training method, equipment and medium</title><source>esp@cenet</source><creator>LIU ZHENG ; TANG WEI ; FAN SHAOJIE ; ZHU BAOHUI ; GUO XIN ; ZHAO WEI ; FEI DONG ; YANG HAIBIN ; JIA WUCAI ; LIU LIN ; LUO JING</creator><creatorcontrib>LIU ZHENG ; TANG WEI ; FAN SHAOJIE ; ZHU BAOHUI ; GUO XIN ; ZHAO WEI ; FEI DONG ; YANG HAIBIN ; JIA WUCAI ; LIU LIN ; LUO JING</creatorcontrib><description>The invention provides an image processing method, a network model training method, electronic equipment and a storage medium, and relates to the technical field of image processing. The image processing method comprises the following steps: extracting semantic features of an obtained input image to obtain a feature map corresponding to the input image; performing position prediction on the feature map corresponding to the input image to obtain a to-be-processed image; performing grid motion prediction on the to-be-processed image based on the residual progressive regression network model to obtain a to-be-matched image; and matching the to-be-matched image with a preset grid to obtain a target image. According to the method, deviation information in a to-be-processed image is adjusted based on a residual error progressive regression network model, the consistency of image content is improved, and abnormalities such as irregular boundaries and picture distortion occurring in image splicing are reduced, so tha</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231215&amp;DB=EPODOC&amp;CC=CN&amp;NR=117237579A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231215&amp;DB=EPODOC&amp;CC=CN&amp;NR=117237579A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU ZHENG</creatorcontrib><creatorcontrib>TANG WEI</creatorcontrib><creatorcontrib>FAN SHAOJIE</creatorcontrib><creatorcontrib>ZHU BAOHUI</creatorcontrib><creatorcontrib>GUO XIN</creatorcontrib><creatorcontrib>ZHAO WEI</creatorcontrib><creatorcontrib>FEI DONG</creatorcontrib><creatorcontrib>YANG HAIBIN</creatorcontrib><creatorcontrib>JIA WUCAI</creatorcontrib><creatorcontrib>LIU LIN</creatorcontrib><creatorcontrib>LUO JING</creatorcontrib><title>Image processing method, network model training method, equipment and medium</title><description>The invention provides an image processing method, a network model training method, electronic equipment and a storage medium, and relates to the technical field of image processing. The image processing method comprises the following steps: extracting semantic features of an obtained input image to obtain a feature map corresponding to the input image; performing position prediction on the feature map corresponding to the input image to obtain a to-be-processed image; performing grid motion prediction on the to-be-processed image based on the residual progressive regression network model to obtain a to-be-matched image; and matching the to-be-matched image with a preset grid to obtain a target image. According to the method, deviation information in a to-be-processed image is adjusted based on a residual error progressive regression network model, the consistency of image content is improved, and abnormalities such as irregular boundaries and picture distortion occurring in image splicing are reduced, so tha</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPDxzE1MT1UoKMpPTi0uzsxLV8hNLcnIT9FRyEstKc8vylbIzU9JzVEoKUrMzEOWTi0szSzITc0rUUjMSwGKpmSW5vIwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTkVKCp8c5-hobmRsbmpuaWjsbEqAEAoFE15A</recordid><startdate>20231215</startdate><enddate>20231215</enddate><creator>LIU ZHENG</creator><creator>TANG WEI</creator><creator>FAN SHAOJIE</creator><creator>ZHU BAOHUI</creator><creator>GUO XIN</creator><creator>ZHAO WEI</creator><creator>FEI DONG</creator><creator>YANG HAIBIN</creator><creator>JIA WUCAI</creator><creator>LIU LIN</creator><creator>LUO JING</creator><scope>EVB</scope></search><sort><creationdate>20231215</creationdate><title>Image processing method, network model training method, equipment and medium</title><author>LIU ZHENG ; TANG WEI ; FAN SHAOJIE ; ZHU BAOHUI ; GUO XIN ; ZHAO WEI ; FEI DONG ; YANG HAIBIN ; JIA WUCAI ; LIU LIN ; LUO JING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117237579A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU ZHENG</creatorcontrib><creatorcontrib>TANG WEI</creatorcontrib><creatorcontrib>FAN SHAOJIE</creatorcontrib><creatorcontrib>ZHU BAOHUI</creatorcontrib><creatorcontrib>GUO XIN</creatorcontrib><creatorcontrib>ZHAO WEI</creatorcontrib><creatorcontrib>FEI DONG</creatorcontrib><creatorcontrib>YANG HAIBIN</creatorcontrib><creatorcontrib>JIA WUCAI</creatorcontrib><creatorcontrib>LIU LIN</creatorcontrib><creatorcontrib>LUO JING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU ZHENG</au><au>TANG WEI</au><au>FAN SHAOJIE</au><au>ZHU BAOHUI</au><au>GUO XIN</au><au>ZHAO WEI</au><au>FEI DONG</au><au>YANG HAIBIN</au><au>JIA WUCAI</au><au>LIU LIN</au><au>LUO JING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Image processing method, network model training method, equipment and medium</title><date>2023-12-15</date><risdate>2023</risdate><abstract>The invention provides an image processing method, a network model training method, electronic equipment and a storage medium, and relates to the technical field of image processing. The image processing method comprises the following steps: extracting semantic features of an obtained input image to obtain a feature map corresponding to the input image; performing position prediction on the feature map corresponding to the input image to obtain a to-be-processed image; performing grid motion prediction on the to-be-processed image based on the residual progressive regression network model to obtain a to-be-matched image; and matching the to-be-matched image with a preset grid to obtain a target image. According to the method, deviation information in a to-be-processed image is adjusted based on a residual error progressive regression network model, the consistency of image content is improved, and abnormalities such as irregular boundaries and picture distortion occurring in image splicing are reduced, so tha</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117237579A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Image processing method, network model training method, equipment and medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20ZHENG&rft.date=2023-12-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117237579A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true