Intelligent penetration testing method and system based on deep reinforcement learning

The invention provides an intelligent penetration testing method and system based on deep reinforcement learning, and belongs to the technical field of penetration testing. According to the method, state space representation is carried out based on a text embedding technology, penetration test actio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG YUE, HOU DONGDONG, ZHOU SHICHENG, WANG YONGJIE, REN QIANKUN, LIU JINGJU, ZHONG XIAOFENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG YUE
HOU DONGDONG
ZHOU SHICHENG
WANG YONGJIE
REN QIANKUN
LIU JINGJU
ZHONG XIAOFENG
description The invention provides an intelligent penetration testing method and system based on deep reinforcement learning, and belongs to the technical field of penetration testing. According to the method, state space representation is carried out based on a text embedding technology, penetration test action decision is carried out based on deep reinforcement learning, automatic load calling is carried out based on a Metasploit database, learning training can be realized in a diversified target drone environment, and decision ability evolution of an intelligent agent can be realized in an iterative training process. 本发明提出一种基于深度强化学习的智能化渗透测试方法与系统,属于渗透测试技术领域。本发明基于文本嵌入技术进行状态空间表征,基于深度强化学习进行渗透测试动作决策,基于Metasploit数据库进行载荷自动调用,可在多样化的靶机环境下实现学习训练,智能体可在迭代训练过程中实现决策能力进化。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117235742A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117235742A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117235742A3</originalsourceid><addsrcrecordid>eNqNjTEOwjAQBNNQIOAPxwMokoBSowgEDRWijUy8SSzZZ8t3Db8nkXgA1TQzu-vidWeF924EKyUwNBt1kUkh6nikAJ2iJcOW5COKQG8jsDQrFkiU4XiIuUdYFjxM5jnbFqvBeMHux02xv16e7e2AFDtIMv1y1bWPsmyq-tQcq3P9j_MFfK46Nw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intelligent penetration testing method and system based on deep reinforcement learning</title><source>esp@cenet</source><creator>ZHANG YUE ; HOU DONGDONG ; ZHOU SHICHENG ; WANG YONGJIE ; REN QIANKUN ; LIU JINGJU ; ZHONG XIAOFENG</creator><creatorcontrib>ZHANG YUE ; HOU DONGDONG ; ZHOU SHICHENG ; WANG YONGJIE ; REN QIANKUN ; LIU JINGJU ; ZHONG XIAOFENG</creatorcontrib><description>The invention provides an intelligent penetration testing method and system based on deep reinforcement learning, and belongs to the technical field of penetration testing. According to the method, state space representation is carried out based on a text embedding technology, penetration test action decision is carried out based on deep reinforcement learning, automatic load calling is carried out based on a Metasploit database, learning training can be realized in a diversified target drone environment, and decision ability evolution of an intelligent agent can be realized in an iterative training process. 本发明提出一种基于深度强化学习的智能化渗透测试方法与系统,属于渗透测试技术领域。本发明基于文本嵌入技术进行状态空间表征,基于深度强化学习进行渗透测试动作决策,基于Metasploit数据库进行载荷自动调用,可在多样化的靶机环境下实现学习训练,智能体可在迭代训练过程中实现决策能力进化。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231215&amp;DB=EPODOC&amp;CC=CN&amp;NR=117235742A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231215&amp;DB=EPODOC&amp;CC=CN&amp;NR=117235742A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG YUE</creatorcontrib><creatorcontrib>HOU DONGDONG</creatorcontrib><creatorcontrib>ZHOU SHICHENG</creatorcontrib><creatorcontrib>WANG YONGJIE</creatorcontrib><creatorcontrib>REN QIANKUN</creatorcontrib><creatorcontrib>LIU JINGJU</creatorcontrib><creatorcontrib>ZHONG XIAOFENG</creatorcontrib><title>Intelligent penetration testing method and system based on deep reinforcement learning</title><description>The invention provides an intelligent penetration testing method and system based on deep reinforcement learning, and belongs to the technical field of penetration testing. According to the method, state space representation is carried out based on a text embedding technology, penetration test action decision is carried out based on deep reinforcement learning, automatic load calling is carried out based on a Metasploit database, learning training can be realized in a diversified target drone environment, and decision ability evolution of an intelligent agent can be realized in an iterative training process. 本发明提出一种基于深度强化学习的智能化渗透测试方法与系统,属于渗透测试技术领域。本发明基于文本嵌入技术进行状态空间表征,基于深度强化学习进行渗透测试动作决策,基于Metasploit数据库进行载荷自动调用,可在多样化的靶机环境下实现学习训练,智能体可在迭代训练过程中实现决策能力进化。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTEOwjAQBNNQIOAPxwMokoBSowgEDRWijUy8SSzZZ8t3Db8nkXgA1TQzu-vidWeF924EKyUwNBt1kUkh6nikAJ2iJcOW5COKQG8jsDQrFkiU4XiIuUdYFjxM5jnbFqvBeMHux02xv16e7e2AFDtIMv1y1bWPsmyq-tQcq3P9j_MFfK46Nw</recordid><startdate>20231215</startdate><enddate>20231215</enddate><creator>ZHANG YUE</creator><creator>HOU DONGDONG</creator><creator>ZHOU SHICHENG</creator><creator>WANG YONGJIE</creator><creator>REN QIANKUN</creator><creator>LIU JINGJU</creator><creator>ZHONG XIAOFENG</creator><scope>EVB</scope></search><sort><creationdate>20231215</creationdate><title>Intelligent penetration testing method and system based on deep reinforcement learning</title><author>ZHANG YUE ; HOU DONGDONG ; ZHOU SHICHENG ; WANG YONGJIE ; REN QIANKUN ; LIU JINGJU ; ZHONG XIAOFENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117235742A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG YUE</creatorcontrib><creatorcontrib>HOU DONGDONG</creatorcontrib><creatorcontrib>ZHOU SHICHENG</creatorcontrib><creatorcontrib>WANG YONGJIE</creatorcontrib><creatorcontrib>REN QIANKUN</creatorcontrib><creatorcontrib>LIU JINGJU</creatorcontrib><creatorcontrib>ZHONG XIAOFENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG YUE</au><au>HOU DONGDONG</au><au>ZHOU SHICHENG</au><au>WANG YONGJIE</au><au>REN QIANKUN</au><au>LIU JINGJU</au><au>ZHONG XIAOFENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intelligent penetration testing method and system based on deep reinforcement learning</title><date>2023-12-15</date><risdate>2023</risdate><abstract>The invention provides an intelligent penetration testing method and system based on deep reinforcement learning, and belongs to the technical field of penetration testing. According to the method, state space representation is carried out based on a text embedding technology, penetration test action decision is carried out based on deep reinforcement learning, automatic load calling is carried out based on a Metasploit database, learning training can be realized in a diversified target drone environment, and decision ability evolution of an intelligent agent can be realized in an iterative training process. 本发明提出一种基于深度强化学习的智能化渗透测试方法与系统,属于渗透测试技术领域。本发明基于文本嵌入技术进行状态空间表征,基于深度强化学习进行渗透测试动作决策,基于Metasploit数据库进行载荷自动调用,可在多样化的靶机环境下实现学习训练,智能体可在迭代训练过程中实现决策能力进化。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117235742A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Intelligent penetration testing method and system based on deep reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20YUE&rft.date=2023-12-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117235742A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true