Vehicle speed prediction method based on clustering and neural network

The invention relates to the technical field of intelligent traffic system vehicle speed prediction, in particular to a clustering and neural network-based vehicle speed prediction method, which comprises the following steps of: calculating Spearman coefficients among characteristics according to ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LUO HAOXUAN, HU XIAO, HUANG LINYU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LUO HAOXUAN
HU XIAO
HUANG LINYU
description The invention relates to the technical field of intelligent traffic system vehicle speed prediction, in particular to a clustering and neural network-based vehicle speed prediction method, which comprises the following steps of: calculating Spearman coefficients among characteristics according to vehicle historical driving characteristic data including driving speed, acceleration and front vehicle distance data; determining each feature weight coefficient for clustering, determining the number of clusters according to the contour coefficient index, and clustering the historical data segments by using k-means; and further constructing a speed prediction model based on deep learning for the sample data segments in each cluster. By clustering different speed change modes and establishing a speed prediction model in a targeted manner, the precision of vehicle speed prediction in a complex driving scene is improved. 本发明涉及智能交通系统车辆速度预测技术领域,具体的说是一种基于聚类和神经网络的车辆速度预测方法,其根据车辆历史驾驶特征数据,包括行驶速度、加速度和前车距离数据,计算特征间斯皮尔曼(Spearman)
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117198064A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117198064A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117198064A3</originalsourceid><addsrcrecordid>eNrjZHALS83ITM5JVSguSE1NUSgoSk3JTC7JzM9TyE0tychPUUhKLAaKA_nJOaXFJalFmXnpCol5KQp5qaVFiTlAqqQ8vyibh4E1LTGnOJUXSnMzKLq5hjh76KYW5MenFhckJqcCVcY7-xkamhtaWhiYmTgaE6MGADmXM7o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Vehicle speed prediction method based on clustering and neural network</title><source>esp@cenet</source><creator>LUO HAOXUAN ; HU XIAO ; HUANG LINYU</creator><creatorcontrib>LUO HAOXUAN ; HU XIAO ; HUANG LINYU</creatorcontrib><description>The invention relates to the technical field of intelligent traffic system vehicle speed prediction, in particular to a clustering and neural network-based vehicle speed prediction method, which comprises the following steps of: calculating Spearman coefficients among characteristics according to vehicle historical driving characteristic data including driving speed, acceleration and front vehicle distance data; determining each feature weight coefficient for clustering, determining the number of clusters according to the contour coefficient index, and clustering the historical data segments by using k-means; and further constructing a speed prediction model based on deep learning for the sample data segments in each cluster. By clustering different speed change modes and establishing a speed prediction model in a targeted manner, the precision of vehicle speed prediction in a complex driving scene is improved. 本发明涉及智能交通系统车辆速度预测技术领域,具体的说是一种基于聚类和神经网络的车辆速度预测方法,其根据车辆历史驾驶特征数据,包括行驶速度、加速度和前车距离数据,计算特征间斯皮尔曼(Spearman)</description><language>chi ; eng</language><subject>ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDEDFOR ELSEWHERE ; CALCULATING ; CHECKING-DEVICES ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; GENERATING RANDOM NUMBERS ; PHYSICS ; REGISTERING OR INDICATING THE WORKING OF MACHINES ; SIGNALLING ; TIME OR ATTENDANCE REGISTERS ; TRAFFIC CONTROL SYSTEMS ; VOTING OR LOTTERY APPARATUS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231208&amp;DB=EPODOC&amp;CC=CN&amp;NR=117198064A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25546,76297</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231208&amp;DB=EPODOC&amp;CC=CN&amp;NR=117198064A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LUO HAOXUAN</creatorcontrib><creatorcontrib>HU XIAO</creatorcontrib><creatorcontrib>HUANG LINYU</creatorcontrib><title>Vehicle speed prediction method based on clustering and neural network</title><description>The invention relates to the technical field of intelligent traffic system vehicle speed prediction, in particular to a clustering and neural network-based vehicle speed prediction method, which comprises the following steps of: calculating Spearman coefficients among characteristics according to vehicle historical driving characteristic data including driving speed, acceleration and front vehicle distance data; determining each feature weight coefficient for clustering, determining the number of clusters according to the contour coefficient index, and clustering the historical data segments by using k-means; and further constructing a speed prediction model based on deep learning for the sample data segments in each cluster. By clustering different speed change modes and establishing a speed prediction model in a targeted manner, the precision of vehicle speed prediction in a complex driving scene is improved. 本发明涉及智能交通系统车辆速度预测技术领域,具体的说是一种基于聚类和神经网络的车辆速度预测方法,其根据车辆历史驾驶特征数据,包括行驶速度、加速度和前车距离数据,计算特征间斯皮尔曼(Spearman)</description><subject>ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDEDFOR ELSEWHERE</subject><subject>CALCULATING</subject><subject>CHECKING-DEVICES</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>GENERATING RANDOM NUMBERS</subject><subject>PHYSICS</subject><subject>REGISTERING OR INDICATING THE WORKING OF MACHINES</subject><subject>SIGNALLING</subject><subject>TIME OR ATTENDANCE REGISTERS</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><subject>VOTING OR LOTTERY APPARATUS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHALS83ITM5JVSguSE1NUSgoSk3JTC7JzM9TyE0tychPUUhKLAaKA_nJOaXFJalFmXnpCol5KQp5qaVFiTlAqqQ8vyibh4E1LTGnOJUXSnMzKLq5hjh76KYW5MenFhckJqcCVcY7-xkamhtaWhiYmTgaE6MGADmXM7o</recordid><startdate>20231208</startdate><enddate>20231208</enddate><creator>LUO HAOXUAN</creator><creator>HU XIAO</creator><creator>HUANG LINYU</creator><scope>EVB</scope></search><sort><creationdate>20231208</creationdate><title>Vehicle speed prediction method based on clustering and neural network</title><author>LUO HAOXUAN ; HU XIAO ; HUANG LINYU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117198064A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDEDFOR ELSEWHERE</topic><topic>CALCULATING</topic><topic>CHECKING-DEVICES</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>GENERATING RANDOM NUMBERS</topic><topic>PHYSICS</topic><topic>REGISTERING OR INDICATING THE WORKING OF MACHINES</topic><topic>SIGNALLING</topic><topic>TIME OR ATTENDANCE REGISTERS</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><topic>VOTING OR LOTTERY APPARATUS</topic><toplevel>online_resources</toplevel><creatorcontrib>LUO HAOXUAN</creatorcontrib><creatorcontrib>HU XIAO</creatorcontrib><creatorcontrib>HUANG LINYU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LUO HAOXUAN</au><au>HU XIAO</au><au>HUANG LINYU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Vehicle speed prediction method based on clustering and neural network</title><date>2023-12-08</date><risdate>2023</risdate><abstract>The invention relates to the technical field of intelligent traffic system vehicle speed prediction, in particular to a clustering and neural network-based vehicle speed prediction method, which comprises the following steps of: calculating Spearman coefficients among characteristics according to vehicle historical driving characteristic data including driving speed, acceleration and front vehicle distance data; determining each feature weight coefficient for clustering, determining the number of clusters according to the contour coefficient index, and clustering the historical data segments by using k-means; and further constructing a speed prediction model based on deep learning for the sample data segments in each cluster. By clustering different speed change modes and establishing a speed prediction model in a targeted manner, the precision of vehicle speed prediction in a complex driving scene is improved. 本发明涉及智能交通系统车辆速度预测技术领域,具体的说是一种基于聚类和神经网络的车辆速度预测方法,其根据车辆历史驾驶特征数据,包括行驶速度、加速度和前车距离数据,计算特征间斯皮尔曼(Spearman)</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117198064A
source esp@cenet
subjects ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDEDFOR ELSEWHERE
CALCULATING
CHECKING-DEVICES
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
GENERATING RANDOM NUMBERS
PHYSICS
REGISTERING OR INDICATING THE WORKING OF MACHINES
SIGNALLING
TIME OR ATTENDANCE REGISTERS
TRAFFIC CONTROL SYSTEMS
VOTING OR LOTTERY APPARATUS
title Vehicle speed prediction method based on clustering and neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LUO%20HAOXUAN&rft.date=2023-12-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117198064A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true