Vehicle speed prediction method based on clustering and neural network
The invention relates to the technical field of intelligent traffic system vehicle speed prediction, in particular to a clustering and neural network-based vehicle speed prediction method, which comprises the following steps of: calculating Spearman coefficients among characteristics according to ve...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LUO HAOXUAN HU XIAO HUANG LINYU |
description | The invention relates to the technical field of intelligent traffic system vehicle speed prediction, in particular to a clustering and neural network-based vehicle speed prediction method, which comprises the following steps of: calculating Spearman coefficients among characteristics according to vehicle historical driving characteristic data including driving speed, acceleration and front vehicle distance data; determining each feature weight coefficient for clustering, determining the number of clusters according to the contour coefficient index, and clustering the historical data segments by using k-means; and further constructing a speed prediction model based on deep learning for the sample data segments in each cluster. By clustering different speed change modes and establishing a speed prediction model in a targeted manner, the precision of vehicle speed prediction in a complex driving scene is improved.
本发明涉及智能交通系统车辆速度预测技术领域,具体的说是一种基于聚类和神经网络的车辆速度预测方法,其根据车辆历史驾驶特征数据,包括行驶速度、加速度和前车距离数据,计算特征间斯皮尔曼(Spearman) |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117198064A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117198064A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117198064A3</originalsourceid><addsrcrecordid>eNrjZHALS83ITM5JVSguSE1NUSgoSk3JTC7JzM9TyE0tychPUUhKLAaKA_nJOaXFJalFmXnpCol5KQp5qaVFiTlAqqQ8vyibh4E1LTGnOJUXSnMzKLq5hjh76KYW5MenFhckJqcCVcY7-xkamhtaWhiYmTgaE6MGADmXM7o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Vehicle speed prediction method based on clustering and neural network</title><source>esp@cenet</source><creator>LUO HAOXUAN ; HU XIAO ; HUANG LINYU</creator><creatorcontrib>LUO HAOXUAN ; HU XIAO ; HUANG LINYU</creatorcontrib><description>The invention relates to the technical field of intelligent traffic system vehicle speed prediction, in particular to a clustering and neural network-based vehicle speed prediction method, which comprises the following steps of: calculating Spearman coefficients among characteristics according to vehicle historical driving characteristic data including driving speed, acceleration and front vehicle distance data; determining each feature weight coefficient for clustering, determining the number of clusters according to the contour coefficient index, and clustering the historical data segments by using k-means; and further constructing a speed prediction model based on deep learning for the sample data segments in each cluster. By clustering different speed change modes and establishing a speed prediction model in a targeted manner, the precision of vehicle speed prediction in a complex driving scene is improved.
本发明涉及智能交通系统车辆速度预测技术领域,具体的说是一种基于聚类和神经网络的车辆速度预测方法,其根据车辆历史驾驶特征数据,包括行驶速度、加速度和前车距离数据,计算特征间斯皮尔曼(Spearman)</description><language>chi ; eng</language><subject>ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDEDFOR ELSEWHERE ; CALCULATING ; CHECKING-DEVICES ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; GENERATING RANDOM NUMBERS ; PHYSICS ; REGISTERING OR INDICATING THE WORKING OF MACHINES ; SIGNALLING ; TIME OR ATTENDANCE REGISTERS ; TRAFFIC CONTROL SYSTEMS ; VOTING OR LOTTERY APPARATUS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231208&DB=EPODOC&CC=CN&NR=117198064A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25546,76297</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231208&DB=EPODOC&CC=CN&NR=117198064A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LUO HAOXUAN</creatorcontrib><creatorcontrib>HU XIAO</creatorcontrib><creatorcontrib>HUANG LINYU</creatorcontrib><title>Vehicle speed prediction method based on clustering and neural network</title><description>The invention relates to the technical field of intelligent traffic system vehicle speed prediction, in particular to a clustering and neural network-based vehicle speed prediction method, which comprises the following steps of: calculating Spearman coefficients among characteristics according to vehicle historical driving characteristic data including driving speed, acceleration and front vehicle distance data; determining each feature weight coefficient for clustering, determining the number of clusters according to the contour coefficient index, and clustering the historical data segments by using k-means; and further constructing a speed prediction model based on deep learning for the sample data segments in each cluster. By clustering different speed change modes and establishing a speed prediction model in a targeted manner, the precision of vehicle speed prediction in a complex driving scene is improved.
本发明涉及智能交通系统车辆速度预测技术领域,具体的说是一种基于聚类和神经网络的车辆速度预测方法,其根据车辆历史驾驶特征数据,包括行驶速度、加速度和前车距离数据,计算特征间斯皮尔曼(Spearman)</description><subject>ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDEDFOR ELSEWHERE</subject><subject>CALCULATING</subject><subject>CHECKING-DEVICES</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>GENERATING RANDOM NUMBERS</subject><subject>PHYSICS</subject><subject>REGISTERING OR INDICATING THE WORKING OF MACHINES</subject><subject>SIGNALLING</subject><subject>TIME OR ATTENDANCE REGISTERS</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><subject>VOTING OR LOTTERY APPARATUS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHALS83ITM5JVSguSE1NUSgoSk3JTC7JzM9TyE0tychPUUhKLAaKA_nJOaXFJalFmXnpCol5KQp5qaVFiTlAqqQ8vyibh4E1LTGnOJUXSnMzKLq5hjh76KYW5MenFhckJqcCVcY7-xkamhtaWhiYmTgaE6MGADmXM7o</recordid><startdate>20231208</startdate><enddate>20231208</enddate><creator>LUO HAOXUAN</creator><creator>HU XIAO</creator><creator>HUANG LINYU</creator><scope>EVB</scope></search><sort><creationdate>20231208</creationdate><title>Vehicle speed prediction method based on clustering and neural network</title><author>LUO HAOXUAN ; HU XIAO ; HUANG LINYU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117198064A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDEDFOR ELSEWHERE</topic><topic>CALCULATING</topic><topic>CHECKING-DEVICES</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>GENERATING RANDOM NUMBERS</topic><topic>PHYSICS</topic><topic>REGISTERING OR INDICATING THE WORKING OF MACHINES</topic><topic>SIGNALLING</topic><topic>TIME OR ATTENDANCE REGISTERS</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><topic>VOTING OR LOTTERY APPARATUS</topic><toplevel>online_resources</toplevel><creatorcontrib>LUO HAOXUAN</creatorcontrib><creatorcontrib>HU XIAO</creatorcontrib><creatorcontrib>HUANG LINYU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LUO HAOXUAN</au><au>HU XIAO</au><au>HUANG LINYU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Vehicle speed prediction method based on clustering and neural network</title><date>2023-12-08</date><risdate>2023</risdate><abstract>The invention relates to the technical field of intelligent traffic system vehicle speed prediction, in particular to a clustering and neural network-based vehicle speed prediction method, which comprises the following steps of: calculating Spearman coefficients among characteristics according to vehicle historical driving characteristic data including driving speed, acceleration and front vehicle distance data; determining each feature weight coefficient for clustering, determining the number of clusters according to the contour coefficient index, and clustering the historical data segments by using k-means; and further constructing a speed prediction model based on deep learning for the sample data segments in each cluster. By clustering different speed change modes and establishing a speed prediction model in a targeted manner, the precision of vehicle speed prediction in a complex driving scene is improved.
本发明涉及智能交通系统车辆速度预测技术领域,具体的说是一种基于聚类和神经网络的车辆速度预测方法,其根据车辆历史驾驶特征数据,包括行驶速度、加速度和前车距离数据,计算特征间斯皮尔曼(Spearman)</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117198064A |
source | esp@cenet |
subjects | ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDEDFOR ELSEWHERE CALCULATING CHECKING-DEVICES COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING GENERATING RANDOM NUMBERS PHYSICS REGISTERING OR INDICATING THE WORKING OF MACHINES SIGNALLING TIME OR ATTENDANCE REGISTERS TRAFFIC CONTROL SYSTEMS VOTING OR LOTTERY APPARATUS |
title | Vehicle speed prediction method based on clustering and neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LUO%20HAOXUAN&rft.date=2023-12-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117198064A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |