Relationship extraction method based on entity mapping

The invention belongs to the field of text information processing, and discloses a relation extraction method based on entity mapping, which comprises the following steps of: firstly, acquiring original data, marking the data and dividing the data into a training set and a test set; then, constructi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG SHUAI, TANG WENZHONG, TANG HONGMEI, ZHU DIXIONGXIAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG SHUAI
TANG WENZHONG
TANG HONGMEI
ZHU DIXIONGXIAO
description The invention belongs to the field of text information processing, and discloses a relation extraction method based on entity mapping, which comprises the following steps of: firstly, acquiring original data, marking the data and dividing the data into a training set and a test set; then, constructing a CasRelBLCF network model, including sentence semantic embedding, sentence head entity decoding and sentence tail entity decoding; then, the CasRelBLCF network model is trained, and a relation extraction model is obtained; and finally, inputting sentences into the relation extraction model, and extracting a relation triple. According to the relation extraction method based on entity mapping, the probability of illegal label generation can be reduced, the problem of sample imbalance in a tail entity decoder is effectively solved, and the extraction accuracy and the recall rate are effectively improved. 本发明属于文本信息处理领域,公开了一种基于实体映射的关系抽取方法,包括以下步骤:首先,获取原始数据,对数据进行标注后划分为训练集和测试集;然后,构建CasRelBLCF网络模型,包括句子语义嵌入、句子头实体解码、句子尾实体
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117196030A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117196030A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117196030A3</originalsourceid><addsrcrecordid>eNrjZDALSs1JLMnMzyvOyCxQSK0oKUpMBnEVclNLMvJTFJISi1NTFID81LySzJJKhdzEgoLMvHQeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhLv7GdoaG5oaWZgbOBoTIwaANOZLe4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Relationship extraction method based on entity mapping</title><source>esp@cenet</source><creator>WANG SHUAI ; TANG WENZHONG ; TANG HONGMEI ; ZHU DIXIONGXIAO</creator><creatorcontrib>WANG SHUAI ; TANG WENZHONG ; TANG HONGMEI ; ZHU DIXIONGXIAO</creatorcontrib><description>The invention belongs to the field of text information processing, and discloses a relation extraction method based on entity mapping, which comprises the following steps of: firstly, acquiring original data, marking the data and dividing the data into a training set and a test set; then, constructing a CasRelBLCF network model, including sentence semantic embedding, sentence head entity decoding and sentence tail entity decoding; then, the CasRelBLCF network model is trained, and a relation extraction model is obtained; and finally, inputting sentences into the relation extraction model, and extracting a relation triple. According to the relation extraction method based on entity mapping, the probability of illegal label generation can be reduced, the problem of sample imbalance in a tail entity decoder is effectively solved, and the extraction accuracy and the recall rate are effectively improved. 本发明属于文本信息处理领域,公开了一种基于实体映射的关系抽取方法,包括以下步骤:首先,获取原始数据,对数据进行标注后划分为训练集和测试集;然后,构建CasRelBLCF网络模型,包括句子语义嵌入、句子头实体解码、句子尾实体</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231208&amp;DB=EPODOC&amp;CC=CN&amp;NR=117196030A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231208&amp;DB=EPODOC&amp;CC=CN&amp;NR=117196030A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG SHUAI</creatorcontrib><creatorcontrib>TANG WENZHONG</creatorcontrib><creatorcontrib>TANG HONGMEI</creatorcontrib><creatorcontrib>ZHU DIXIONGXIAO</creatorcontrib><title>Relationship extraction method based on entity mapping</title><description>The invention belongs to the field of text information processing, and discloses a relation extraction method based on entity mapping, which comprises the following steps of: firstly, acquiring original data, marking the data and dividing the data into a training set and a test set; then, constructing a CasRelBLCF network model, including sentence semantic embedding, sentence head entity decoding and sentence tail entity decoding; then, the CasRelBLCF network model is trained, and a relation extraction model is obtained; and finally, inputting sentences into the relation extraction model, and extracting a relation triple. According to the relation extraction method based on entity mapping, the probability of illegal label generation can be reduced, the problem of sample imbalance in a tail entity decoder is effectively solved, and the extraction accuracy and the recall rate are effectively improved. 本发明属于文本信息处理领域,公开了一种基于实体映射的关系抽取方法,包括以下步骤:首先,获取原始数据,对数据进行标注后划分为训练集和测试集;然后,构建CasRelBLCF网络模型,包括句子语义嵌入、句子头实体解码、句子尾实体</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDALSs1JLMnMzyvOyCxQSK0oKUpMBnEVclNLMvJTFJISi1NTFID81LySzJJKhdzEgoLMvHQeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhLv7GdoaG5oaWZgbOBoTIwaANOZLe4</recordid><startdate>20231208</startdate><enddate>20231208</enddate><creator>WANG SHUAI</creator><creator>TANG WENZHONG</creator><creator>TANG HONGMEI</creator><creator>ZHU DIXIONGXIAO</creator><scope>EVB</scope></search><sort><creationdate>20231208</creationdate><title>Relationship extraction method based on entity mapping</title><author>WANG SHUAI ; TANG WENZHONG ; TANG HONGMEI ; ZHU DIXIONGXIAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117196030A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG SHUAI</creatorcontrib><creatorcontrib>TANG WENZHONG</creatorcontrib><creatorcontrib>TANG HONGMEI</creatorcontrib><creatorcontrib>ZHU DIXIONGXIAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG SHUAI</au><au>TANG WENZHONG</au><au>TANG HONGMEI</au><au>ZHU DIXIONGXIAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Relationship extraction method based on entity mapping</title><date>2023-12-08</date><risdate>2023</risdate><abstract>The invention belongs to the field of text information processing, and discloses a relation extraction method based on entity mapping, which comprises the following steps of: firstly, acquiring original data, marking the data and dividing the data into a training set and a test set; then, constructing a CasRelBLCF network model, including sentence semantic embedding, sentence head entity decoding and sentence tail entity decoding; then, the CasRelBLCF network model is trained, and a relation extraction model is obtained; and finally, inputting sentences into the relation extraction model, and extracting a relation triple. According to the relation extraction method based on entity mapping, the probability of illegal label generation can be reduced, the problem of sample imbalance in a tail entity decoder is effectively solved, and the extraction accuracy and the recall rate are effectively improved. 本发明属于文本信息处理领域,公开了一种基于实体映射的关系抽取方法,包括以下步骤:首先,获取原始数据,对数据进行标注后划分为训练集和测试集;然后,构建CasRelBLCF网络模型,包括句子语义嵌入、句子头实体解码、句子尾实体</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117196030A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Relationship extraction method based on entity mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20SHUAI&rft.date=2023-12-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117196030A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true