Computer vision task confrontation sample generation method, terminal and medium

The invention discloses an adversarial sample generation method for a computer vision task, a terminal and a medium, and the method achieves a specific quantifiable constraint target for the disturbance invisibility of an adversarial sample in a fast gradient symbol method in the form of a structura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MA ZHICHENG, YANG YONG, YANG FAN, GENG JIANGYI, ZHAO JINXIONG, LI ZHIRU, YU JUN, ZHAO HONG, ZHU WENTANG, GONG BO, WANG DONG, LIU DONGQING, ZHU XIAOQIN, ZHANG XUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MA ZHICHENG
YANG YONG
YANG FAN
GENG JIANGYI
ZHAO JINXIONG
LI ZHIRU
YU JUN
ZHAO HONG
ZHU WENTANG
GONG BO
WANG DONG
LIU DONGQING
ZHU XIAOQIN
ZHANG XUN
description The invention discloses an adversarial sample generation method for a computer vision task, a terminal and a medium, and the method achieves a specific quantifiable constraint target for the disturbance invisibility of an adversarial sample in a fast gradient symbol method in the form of a structural similarity loss function, thereby generating the adversarial sample with higher disturbance invisibility. Meanwhile, the method can be combined with any prior art which globally or locally adopts a fast gradient symbol method, and has high expansibility and adaptability. 本发明公开了一种计算机视觉任务的对抗样本生成方法、终端及介质,本方法用结构相似性损失函数的形式在快速梯度符号法中为对抗样本的扰动不可见性实现了具体的可量化的约束目标,从而生成扰动不可见性更高的对抗样本,同时本方法可与任意全局或局部采用了快速梯度符号法的现有技术进行组合,具有高扩展性与适应性。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117173534A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117173534A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117173534A3</originalsourceid><addsrcrecordid>eNrjZAhwzs8tKC1JLVIoyyzOzM9TKEkszlZIzs9LK8rPK0ksAQkVJ-YW5KQqpKfmpRZBRHJTSzLyU3QUgPpyM_MScxQS81KAgimZpbk8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxGWhMSbyzn6GhuaG5samxiaMxMWoA8HA34A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Computer vision task confrontation sample generation method, terminal and medium</title><source>esp@cenet</source><creator>MA ZHICHENG ; YANG YONG ; YANG FAN ; GENG JIANGYI ; ZHAO JINXIONG ; LI ZHIRU ; YU JUN ; ZHAO HONG ; ZHU WENTANG ; GONG BO ; WANG DONG ; LIU DONGQING ; ZHU XIAOQIN ; ZHANG XUN</creator><creatorcontrib>MA ZHICHENG ; YANG YONG ; YANG FAN ; GENG JIANGYI ; ZHAO JINXIONG ; LI ZHIRU ; YU JUN ; ZHAO HONG ; ZHU WENTANG ; GONG BO ; WANG DONG ; LIU DONGQING ; ZHU XIAOQIN ; ZHANG XUN</creatorcontrib><description>The invention discloses an adversarial sample generation method for a computer vision task, a terminal and a medium, and the method achieves a specific quantifiable constraint target for the disturbance invisibility of an adversarial sample in a fast gradient symbol method in the form of a structural similarity loss function, thereby generating the adversarial sample with higher disturbance invisibility. Meanwhile, the method can be combined with any prior art which globally or locally adopts a fast gradient symbol method, and has high expansibility and adaptability. 本发明公开了一种计算机视觉任务的对抗样本生成方法、终端及介质,本方法用结构相似性损失函数的形式在快速梯度符号法中为对抗样本的扰动不可见性实现了具体的可量化的约束目标,从而生成扰动不可见性更高的对抗样本,同时本方法可与任意全局或局部采用了快速梯度符号法的现有技术进行组合,具有高扩展性与适应性。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231205&amp;DB=EPODOC&amp;CC=CN&amp;NR=117173534A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231205&amp;DB=EPODOC&amp;CC=CN&amp;NR=117173534A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MA ZHICHENG</creatorcontrib><creatorcontrib>YANG YONG</creatorcontrib><creatorcontrib>YANG FAN</creatorcontrib><creatorcontrib>GENG JIANGYI</creatorcontrib><creatorcontrib>ZHAO JINXIONG</creatorcontrib><creatorcontrib>LI ZHIRU</creatorcontrib><creatorcontrib>YU JUN</creatorcontrib><creatorcontrib>ZHAO HONG</creatorcontrib><creatorcontrib>ZHU WENTANG</creatorcontrib><creatorcontrib>GONG BO</creatorcontrib><creatorcontrib>WANG DONG</creatorcontrib><creatorcontrib>LIU DONGQING</creatorcontrib><creatorcontrib>ZHU XIAOQIN</creatorcontrib><creatorcontrib>ZHANG XUN</creatorcontrib><title>Computer vision task confrontation sample generation method, terminal and medium</title><description>The invention discloses an adversarial sample generation method for a computer vision task, a terminal and a medium, and the method achieves a specific quantifiable constraint target for the disturbance invisibility of an adversarial sample in a fast gradient symbol method in the form of a structural similarity loss function, thereby generating the adversarial sample with higher disturbance invisibility. Meanwhile, the method can be combined with any prior art which globally or locally adopts a fast gradient symbol method, and has high expansibility and adaptability. 本发明公开了一种计算机视觉任务的对抗样本生成方法、终端及介质,本方法用结构相似性损失函数的形式在快速梯度符号法中为对抗样本的扰动不可见性实现了具体的可量化的约束目标,从而生成扰动不可见性更高的对抗样本,同时本方法可与任意全局或局部采用了快速梯度符号法的现有技术进行组合,具有高扩展性与适应性。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAhwzs8tKC1JLVIoyyzOzM9TKEkszlZIzs9LK8rPK0ksAQkVJ-YW5KQqpKfmpRZBRHJTSzLyU3QUgPpyM_MScxQS81KAgimZpbk8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxGWhMSbyzn6GhuaG5samxiaMxMWoA8HA34A</recordid><startdate>20231205</startdate><enddate>20231205</enddate><creator>MA ZHICHENG</creator><creator>YANG YONG</creator><creator>YANG FAN</creator><creator>GENG JIANGYI</creator><creator>ZHAO JINXIONG</creator><creator>LI ZHIRU</creator><creator>YU JUN</creator><creator>ZHAO HONG</creator><creator>ZHU WENTANG</creator><creator>GONG BO</creator><creator>WANG DONG</creator><creator>LIU DONGQING</creator><creator>ZHU XIAOQIN</creator><creator>ZHANG XUN</creator><scope>EVB</scope></search><sort><creationdate>20231205</creationdate><title>Computer vision task confrontation sample generation method, terminal and medium</title><author>MA ZHICHENG ; YANG YONG ; YANG FAN ; GENG JIANGYI ; ZHAO JINXIONG ; LI ZHIRU ; YU JUN ; ZHAO HONG ; ZHU WENTANG ; GONG BO ; WANG DONG ; LIU DONGQING ; ZHU XIAOQIN ; ZHANG XUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117173534A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MA ZHICHENG</creatorcontrib><creatorcontrib>YANG YONG</creatorcontrib><creatorcontrib>YANG FAN</creatorcontrib><creatorcontrib>GENG JIANGYI</creatorcontrib><creatorcontrib>ZHAO JINXIONG</creatorcontrib><creatorcontrib>LI ZHIRU</creatorcontrib><creatorcontrib>YU JUN</creatorcontrib><creatorcontrib>ZHAO HONG</creatorcontrib><creatorcontrib>ZHU WENTANG</creatorcontrib><creatorcontrib>GONG BO</creatorcontrib><creatorcontrib>WANG DONG</creatorcontrib><creatorcontrib>LIU DONGQING</creatorcontrib><creatorcontrib>ZHU XIAOQIN</creatorcontrib><creatorcontrib>ZHANG XUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MA ZHICHENG</au><au>YANG YONG</au><au>YANG FAN</au><au>GENG JIANGYI</au><au>ZHAO JINXIONG</au><au>LI ZHIRU</au><au>YU JUN</au><au>ZHAO HONG</au><au>ZHU WENTANG</au><au>GONG BO</au><au>WANG DONG</au><au>LIU DONGQING</au><au>ZHU XIAOQIN</au><au>ZHANG XUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Computer vision task confrontation sample generation method, terminal and medium</title><date>2023-12-05</date><risdate>2023</risdate><abstract>The invention discloses an adversarial sample generation method for a computer vision task, a terminal and a medium, and the method achieves a specific quantifiable constraint target for the disturbance invisibility of an adversarial sample in a fast gradient symbol method in the form of a structural similarity loss function, thereby generating the adversarial sample with higher disturbance invisibility. Meanwhile, the method can be combined with any prior art which globally or locally adopts a fast gradient symbol method, and has high expansibility and adaptability. 本发明公开了一种计算机视觉任务的对抗样本生成方法、终端及介质,本方法用结构相似性损失函数的形式在快速梯度符号法中为对抗样本的扰动不可见性实现了具体的可量化的约束目标,从而生成扰动不可见性更高的对抗样本,同时本方法可与任意全局或局部采用了快速梯度符号法的现有技术进行组合,具有高扩展性与适应性。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117173534A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Computer vision task confrontation sample generation method, terminal and medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MA%20ZHICHENG&rft.date=2023-12-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117173534A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true