Domain generalization pedestrian re-identification method based on multi-level data disturbance strategy
A domain generalization pedestrian re-identification model training method based on a multi-level data perturbation strategy comprises the steps of inputting an original pedestrian image into an explicit random perturbation module, reconstructing a target pedestrian and a perturbed pedestrian backgr...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SUN JIA CHEN-LU YIFU CHEN HOUJIN WANG MINYUN CHEN ZIWEI LI YANFENG |
description | A domain generalization pedestrian re-identification model training method based on a multi-level data perturbation strategy comprises the steps of inputting an original pedestrian image into an explicit random perturbation module, reconstructing a target pedestrian and a perturbed pedestrian background into a pedestrian image after background perturbation, and obtaining the pedestrian image after background random perturbation; combining the original pedestrian image and the pedestrian image after background perturbation into an image pair, inputting the image pair into a baseline network for feature extraction, performing implicit perturbation on the extracted features by an uncertain sampling standardization module, and obtaining an output feature pair after integration; and inputting the output feature pair into a loss calculation module, splitting the output feature pair into original pedestrian features and disturbance pedestrian features to calculate covariance loss, finally calculating total loss, car |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117173477A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117173477A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117173477A3</originalsourceid><addsrcrecordid>eNqNjjEKwkAURNNYiHqH7wFShAhbS1SsrOzDT3aSfNjsht0fQU9vRA9gNQxveMw6G05hZPHUwyOykxerBE8TLJJGYU8RuVh4lU7aLxyhQ7DUcIKlT5-dSu7wgCPLymQl6Rwb9i1osbCif26zVccuYffLTba_nO_VNccUaqSJ2-WB1tWtKExhyoMxx_KfzRt8rkE6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Domain generalization pedestrian re-identification method based on multi-level data disturbance strategy</title><source>esp@cenet</source><creator>SUN JIA ; CHEN-LU YIFU ; CHEN HOUJIN ; WANG MINYUN ; CHEN ZIWEI ; LI YANFENG</creator><creatorcontrib>SUN JIA ; CHEN-LU YIFU ; CHEN HOUJIN ; WANG MINYUN ; CHEN ZIWEI ; LI YANFENG</creatorcontrib><description>A domain generalization pedestrian re-identification model training method based on a multi-level data perturbation strategy comprises the steps of inputting an original pedestrian image into an explicit random perturbation module, reconstructing a target pedestrian and a perturbed pedestrian background into a pedestrian image after background perturbation, and obtaining the pedestrian image after background random perturbation; combining the original pedestrian image and the pedestrian image after background perturbation into an image pair, inputting the image pair into a baseline network for feature extraction, performing implicit perturbation on the extracted features by an uncertain sampling standardization module, and obtaining an output feature pair after integration; and inputting the output feature pair into a loss calculation module, splitting the output feature pair into original pedestrian features and disturbance pedestrian features to calculate covariance loss, finally calculating total loss, car</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231205&DB=EPODOC&CC=CN&NR=117173477A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231205&DB=EPODOC&CC=CN&NR=117173477A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUN JIA</creatorcontrib><creatorcontrib>CHEN-LU YIFU</creatorcontrib><creatorcontrib>CHEN HOUJIN</creatorcontrib><creatorcontrib>WANG MINYUN</creatorcontrib><creatorcontrib>CHEN ZIWEI</creatorcontrib><creatorcontrib>LI YANFENG</creatorcontrib><title>Domain generalization pedestrian re-identification method based on multi-level data disturbance strategy</title><description>A domain generalization pedestrian re-identification model training method based on a multi-level data perturbation strategy comprises the steps of inputting an original pedestrian image into an explicit random perturbation module, reconstructing a target pedestrian and a perturbed pedestrian background into a pedestrian image after background perturbation, and obtaining the pedestrian image after background random perturbation; combining the original pedestrian image and the pedestrian image after background perturbation into an image pair, inputting the image pair into a baseline network for feature extraction, performing implicit perturbation on the extracted features by an uncertain sampling standardization module, and obtaining an output feature pair after integration; and inputting the output feature pair into a loss calculation module, splitting the output feature pair into original pedestrian features and disturbance pedestrian features to calculate covariance loss, finally calculating total loss, car</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjjEKwkAURNNYiHqH7wFShAhbS1SsrOzDT3aSfNjsht0fQU9vRA9gNQxveMw6G05hZPHUwyOykxerBE8TLJJGYU8RuVh4lU7aLxyhQ7DUcIKlT5-dSu7wgCPLymQl6Rwb9i1osbCif26zVccuYffLTba_nO_VNccUaqSJ2-WB1tWtKExhyoMxx_KfzRt8rkE6</recordid><startdate>20231205</startdate><enddate>20231205</enddate><creator>SUN JIA</creator><creator>CHEN-LU YIFU</creator><creator>CHEN HOUJIN</creator><creator>WANG MINYUN</creator><creator>CHEN ZIWEI</creator><creator>LI YANFENG</creator><scope>EVB</scope></search><sort><creationdate>20231205</creationdate><title>Domain generalization pedestrian re-identification method based on multi-level data disturbance strategy</title><author>SUN JIA ; CHEN-LU YIFU ; CHEN HOUJIN ; WANG MINYUN ; CHEN ZIWEI ; LI YANFENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117173477A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SUN JIA</creatorcontrib><creatorcontrib>CHEN-LU YIFU</creatorcontrib><creatorcontrib>CHEN HOUJIN</creatorcontrib><creatorcontrib>WANG MINYUN</creatorcontrib><creatorcontrib>CHEN ZIWEI</creatorcontrib><creatorcontrib>LI YANFENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUN JIA</au><au>CHEN-LU YIFU</au><au>CHEN HOUJIN</au><au>WANG MINYUN</au><au>CHEN ZIWEI</au><au>LI YANFENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Domain generalization pedestrian re-identification method based on multi-level data disturbance strategy</title><date>2023-12-05</date><risdate>2023</risdate><abstract>A domain generalization pedestrian re-identification model training method based on a multi-level data perturbation strategy comprises the steps of inputting an original pedestrian image into an explicit random perturbation module, reconstructing a target pedestrian and a perturbed pedestrian background into a pedestrian image after background perturbation, and obtaining the pedestrian image after background random perturbation; combining the original pedestrian image and the pedestrian image after background perturbation into an image pair, inputting the image pair into a baseline network for feature extraction, performing implicit perturbation on the extracted features by an uncertain sampling standardization module, and obtaining an output feature pair after integration; and inputting the output feature pair into a loss calculation module, splitting the output feature pair into original pedestrian features and disturbance pedestrian features to calculate covariance loss, finally calculating total loss, car</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117173477A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Domain generalization pedestrian re-identification method based on multi-level data disturbance strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A45%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUN%20JIA&rft.date=2023-12-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117173477A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |