Coupling calculation method for reservoir thermodynamics and wall heat conduction based on one-dimensional heat conduction
According to the one-dimensional heat conduction-based cave thermodynamics and cave wall heat conduction coupling calculation method, the temperature Tm of a sealing layer is obtained according to the fact that cave air and cave wall convective heat transfer power is equal to cave wall surface heat...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG DAIGUO JIA NING WANG HONGBO LIU SHUN QIAO XIAOXING LIU TAO |
description | According to the one-dimensional heat conduction-based cave thermodynamics and cave wall heat conduction coupling calculation method, the temperature Tm of a sealing layer is obtained according to the fact that cave air and cave wall convective heat transfer power is equal to cave wall surface heat conduction power obtained based on temperature distribution, and the temperature Tm of the sealing layer serves as a boundary condition; respectively carrying out reservoir air thermodynamic calculation and reservoir wall one-dimensional heat conduction calculation, obtaining reservoir air temperature and pressure through the reservoir air thermodynamic calculation, obtaining radial distribution of the reservoir wall temperature through the reservoir wall one-dimensional heat conduction calculation until the set calculation duration is ended, and obtaining the change of the surrounding rock temperature in the whole process; therefore, coupling of the thermodynamic process of air in the cave and the heat transfer pr |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117171954A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117171954A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117171954A3</originalsourceid><addsrcrecordid>eNqNi7EKwkAQRNNYiPoP6wekCCpiKUGxsrIP693EHNzthruLol9vEDsbmWKGx5tp8ap16L2TGxn2ZvCcnQoF5E4ttRopIiHe1UXKHWJQ-xQOziRisfRg76kDZzIqdjCf85UTLI1DBaV1AZJGzD_ivJi07BMW354Vy-PhUp9K9Nog9WwgyE19rqrtmN1mvV_947wB65dH-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Coupling calculation method for reservoir thermodynamics and wall heat conduction based on one-dimensional heat conduction</title><source>esp@cenet</source><creator>ZHANG DAIGUO ; JIA NING ; WANG HONGBO ; LIU SHUN ; QIAO XIAOXING ; LIU TAO</creator><creatorcontrib>ZHANG DAIGUO ; JIA NING ; WANG HONGBO ; LIU SHUN ; QIAO XIAOXING ; LIU TAO</creatorcontrib><description>According to the one-dimensional heat conduction-based cave thermodynamics and cave wall heat conduction coupling calculation method, the temperature Tm of a sealing layer is obtained according to the fact that cave air and cave wall convective heat transfer power is equal to cave wall surface heat conduction power obtained based on temperature distribution, and the temperature Tm of the sealing layer serves as a boundary condition; respectively carrying out reservoir air thermodynamic calculation and reservoir wall one-dimensional heat conduction calculation, obtaining reservoir air temperature and pressure through the reservoir air thermodynamic calculation, obtaining radial distribution of the reservoir wall temperature through the reservoir wall one-dimensional heat conduction calculation until the set calculation duration is ended, and obtaining the change of the surrounding rock temperature in the whole process; therefore, coupling of the thermodynamic process of air in the cave and the heat transfer pr</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231205&DB=EPODOC&CC=CN&NR=117171954A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231205&DB=EPODOC&CC=CN&NR=117171954A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG DAIGUO</creatorcontrib><creatorcontrib>JIA NING</creatorcontrib><creatorcontrib>WANG HONGBO</creatorcontrib><creatorcontrib>LIU SHUN</creatorcontrib><creatorcontrib>QIAO XIAOXING</creatorcontrib><creatorcontrib>LIU TAO</creatorcontrib><title>Coupling calculation method for reservoir thermodynamics and wall heat conduction based on one-dimensional heat conduction</title><description>According to the one-dimensional heat conduction-based cave thermodynamics and cave wall heat conduction coupling calculation method, the temperature Tm of a sealing layer is obtained according to the fact that cave air and cave wall convective heat transfer power is equal to cave wall surface heat conduction power obtained based on temperature distribution, and the temperature Tm of the sealing layer serves as a boundary condition; respectively carrying out reservoir air thermodynamic calculation and reservoir wall one-dimensional heat conduction calculation, obtaining reservoir air temperature and pressure through the reservoir air thermodynamic calculation, obtaining radial distribution of the reservoir wall temperature through the reservoir wall one-dimensional heat conduction calculation until the set calculation duration is ended, and obtaining the change of the surrounding rock temperature in the whole process; therefore, coupling of the thermodynamic process of air in the cave and the heat transfer pr</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EKwkAQRNNYiPoP6wekCCpiKUGxsrIP693EHNzthruLol9vEDsbmWKGx5tp8ap16L2TGxn2ZvCcnQoF5E4ttRopIiHe1UXKHWJQ-xQOziRisfRg76kDZzIqdjCf85UTLI1DBaV1AZJGzD_ivJi07BMW354Vy-PhUp9K9Nog9WwgyE19rqrtmN1mvV_947wB65dH-g</recordid><startdate>20231205</startdate><enddate>20231205</enddate><creator>ZHANG DAIGUO</creator><creator>JIA NING</creator><creator>WANG HONGBO</creator><creator>LIU SHUN</creator><creator>QIAO XIAOXING</creator><creator>LIU TAO</creator><scope>EVB</scope></search><sort><creationdate>20231205</creationdate><title>Coupling calculation method for reservoir thermodynamics and wall heat conduction based on one-dimensional heat conduction</title><author>ZHANG DAIGUO ; JIA NING ; WANG HONGBO ; LIU SHUN ; QIAO XIAOXING ; LIU TAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117171954A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG DAIGUO</creatorcontrib><creatorcontrib>JIA NING</creatorcontrib><creatorcontrib>WANG HONGBO</creatorcontrib><creatorcontrib>LIU SHUN</creatorcontrib><creatorcontrib>QIAO XIAOXING</creatorcontrib><creatorcontrib>LIU TAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG DAIGUO</au><au>JIA NING</au><au>WANG HONGBO</au><au>LIU SHUN</au><au>QIAO XIAOXING</au><au>LIU TAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Coupling calculation method for reservoir thermodynamics and wall heat conduction based on one-dimensional heat conduction</title><date>2023-12-05</date><risdate>2023</risdate><abstract>According to the one-dimensional heat conduction-based cave thermodynamics and cave wall heat conduction coupling calculation method, the temperature Tm of a sealing layer is obtained according to the fact that cave air and cave wall convective heat transfer power is equal to cave wall surface heat conduction power obtained based on temperature distribution, and the temperature Tm of the sealing layer serves as a boundary condition; respectively carrying out reservoir air thermodynamic calculation and reservoir wall one-dimensional heat conduction calculation, obtaining reservoir air temperature and pressure through the reservoir air thermodynamic calculation, obtaining radial distribution of the reservoir wall temperature through the reservoir wall one-dimensional heat conduction calculation until the set calculation duration is ended, and obtaining the change of the surrounding rock temperature in the whole process; therefore, coupling of the thermodynamic process of air in the cave and the heat transfer pr</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117171954A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Coupling calculation method for reservoir thermodynamics and wall heat conduction based on one-dimensional heat conduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20DAIGUO&rft.date=2023-12-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117171954A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |