Power transmission line capital construction site risk identification method and system based on image identification

The invention belongs to the technical field of image recognition, and particularly relates to a power transmission line capital construction site risk recognition method and system based on image recognition, and the method comprises the steps: obtaining an image of a power transmission line capita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG XIAO, ZHOU XIONGTAO, SU KAI, JIANG ZHAOQING, DU ZONGHAO, CHEN YUEHUI, TIAN XINDONG, HAN ZIHAN, ZHANG YONGFENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG XIAO
ZHOU XIONGTAO
SU KAI
JIANG ZHAOQING
DU ZONGHAO
CHEN YUEHUI
TIAN XINDONG
HAN ZIHAN
ZHANG YONGFENG
description The invention belongs to the technical field of image recognition, and particularly relates to a power transmission line capital construction site risk recognition method and system based on image recognition, and the method comprises the steps: obtaining an image of a power transmission line capital construction site; marking the security risk of the obtained image to obtain a security risk image; according to the obtained safety risk image and a preset safety risk identification model, identifying the safety risk of the power transmission line capital construction site; wherein the preset security risk identification model adopts a target detection model based on a deep learning algorithm, and the network layer number of the target classification network is increased to realize identification of the security risk image. 本发明属于图像识别技术领域,具体涉及一种基于图像识别的输电线路基建现场风险识别方法及系统,包括:获取输电线路基建现场的图像;标记所获取的图像的安全风险,得到安全风险图像;根据所得到的安全风险图像和预设的安全风险识别模型,识别输电线路基建现场的安全风险;其中,预设的安全风险识别模型采用基于深度学习算法的目标检测模型,增加目标分类网络的网络层数实现对安全风险图像的识别。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117152598A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117152598A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117152598A3</originalsourceid><addsrcrecordid>eNqNyr8OAUEQgPFrFIJ3GA-gOHJBKReiEoX-MnbnmNidvezMRby9P1GpVF_x-4ZFf0x3ymAZRSOrchIILAQOOzYM4JKo5d7ZW5SNILPegD2JccsOPxDJrskDigd9qFGEMyp5eBFHvNDPPy4GLQalybejYrrbnur9jLrUkHboSMia-lCWy7KaV-vVZvHP8wSB-UZM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power transmission line capital construction site risk identification method and system based on image identification</title><source>esp@cenet</source><creator>ZHANG XIAO ; ZHOU XIONGTAO ; SU KAI ; JIANG ZHAOQING ; DU ZONGHAO ; CHEN YUEHUI ; TIAN XINDONG ; HAN ZIHAN ; ZHANG YONGFENG</creator><creatorcontrib>ZHANG XIAO ; ZHOU XIONGTAO ; SU KAI ; JIANG ZHAOQING ; DU ZONGHAO ; CHEN YUEHUI ; TIAN XINDONG ; HAN ZIHAN ; ZHANG YONGFENG</creatorcontrib><description>The invention belongs to the technical field of image recognition, and particularly relates to a power transmission line capital construction site risk recognition method and system based on image recognition, and the method comprises the steps: obtaining an image of a power transmission line capital construction site; marking the security risk of the obtained image to obtain a security risk image; according to the obtained safety risk image and a preset safety risk identification model, identifying the safety risk of the power transmission line capital construction site; wherein the preset security risk identification model adopts a target detection model based on a deep learning algorithm, and the network layer number of the target classification network is increased to realize identification of the security risk image. 本发明属于图像识别技术领域,具体涉及一种基于图像识别的输电线路基建现场风险识别方法及系统,包括:获取输电线路基建现场的图像;标记所获取的图像的安全风险,得到安全风险图像;根据所得到的安全风险图像和预设的安全风险识别模型,识别输电线路基建现场的安全风险;其中,预设的安全风险识别模型采用基于深度学习算法的目标检测模型,增加目标分类网络的网络层数实现对安全风险图像的识别。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231201&amp;DB=EPODOC&amp;CC=CN&amp;NR=117152598A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231201&amp;DB=EPODOC&amp;CC=CN&amp;NR=117152598A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG XIAO</creatorcontrib><creatorcontrib>ZHOU XIONGTAO</creatorcontrib><creatorcontrib>SU KAI</creatorcontrib><creatorcontrib>JIANG ZHAOQING</creatorcontrib><creatorcontrib>DU ZONGHAO</creatorcontrib><creatorcontrib>CHEN YUEHUI</creatorcontrib><creatorcontrib>TIAN XINDONG</creatorcontrib><creatorcontrib>HAN ZIHAN</creatorcontrib><creatorcontrib>ZHANG YONGFENG</creatorcontrib><title>Power transmission line capital construction site risk identification method and system based on image identification</title><description>The invention belongs to the technical field of image recognition, and particularly relates to a power transmission line capital construction site risk recognition method and system based on image recognition, and the method comprises the steps: obtaining an image of a power transmission line capital construction site; marking the security risk of the obtained image to obtain a security risk image; according to the obtained safety risk image and a preset safety risk identification model, identifying the safety risk of the power transmission line capital construction site; wherein the preset security risk identification model adopts a target detection model based on a deep learning algorithm, and the network layer number of the target classification network is increased to realize identification of the security risk image. 本发明属于图像识别技术领域,具体涉及一种基于图像识别的输电线路基建现场风险识别方法及系统,包括:获取输电线路基建现场的图像;标记所获取的图像的安全风险,得到安全风险图像;根据所得到的安全风险图像和预设的安全风险识别模型,识别输电线路基建现场的安全风险;其中,预设的安全风险识别模型采用基于深度学习算法的目标检测模型,增加目标分类网络的网络层数实现对安全风险图像的识别。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyr8OAUEQgPFrFIJ3GA-gOHJBKReiEoX-MnbnmNidvezMRby9P1GpVF_x-4ZFf0x3ymAZRSOrchIILAQOOzYM4JKo5d7ZW5SNILPegD2JccsOPxDJrskDigd9qFGEMyp5eBFHvNDPPy4GLQalybejYrrbnur9jLrUkHboSMia-lCWy7KaV-vVZvHP8wSB-UZM</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>ZHANG XIAO</creator><creator>ZHOU XIONGTAO</creator><creator>SU KAI</creator><creator>JIANG ZHAOQING</creator><creator>DU ZONGHAO</creator><creator>CHEN YUEHUI</creator><creator>TIAN XINDONG</creator><creator>HAN ZIHAN</creator><creator>ZHANG YONGFENG</creator><scope>EVB</scope></search><sort><creationdate>20231201</creationdate><title>Power transmission line capital construction site risk identification method and system based on image identification</title><author>ZHANG XIAO ; ZHOU XIONGTAO ; SU KAI ; JIANG ZHAOQING ; DU ZONGHAO ; CHEN YUEHUI ; TIAN XINDONG ; HAN ZIHAN ; ZHANG YONGFENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117152598A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG XIAO</creatorcontrib><creatorcontrib>ZHOU XIONGTAO</creatorcontrib><creatorcontrib>SU KAI</creatorcontrib><creatorcontrib>JIANG ZHAOQING</creatorcontrib><creatorcontrib>DU ZONGHAO</creatorcontrib><creatorcontrib>CHEN YUEHUI</creatorcontrib><creatorcontrib>TIAN XINDONG</creatorcontrib><creatorcontrib>HAN ZIHAN</creatorcontrib><creatorcontrib>ZHANG YONGFENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG XIAO</au><au>ZHOU XIONGTAO</au><au>SU KAI</au><au>JIANG ZHAOQING</au><au>DU ZONGHAO</au><au>CHEN YUEHUI</au><au>TIAN XINDONG</au><au>HAN ZIHAN</au><au>ZHANG YONGFENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power transmission line capital construction site risk identification method and system based on image identification</title><date>2023-12-01</date><risdate>2023</risdate><abstract>The invention belongs to the technical field of image recognition, and particularly relates to a power transmission line capital construction site risk recognition method and system based on image recognition, and the method comprises the steps: obtaining an image of a power transmission line capital construction site; marking the security risk of the obtained image to obtain a security risk image; according to the obtained safety risk image and a preset safety risk identification model, identifying the safety risk of the power transmission line capital construction site; wherein the preset security risk identification model adopts a target detection model based on a deep learning algorithm, and the network layer number of the target classification network is increased to realize identification of the security risk image. 本发明属于图像识别技术领域,具体涉及一种基于图像识别的输电线路基建现场风险识别方法及系统,包括:获取输电线路基建现场的图像;标记所获取的图像的安全风险,得到安全风险图像;根据所得到的安全风险图像和预设的安全风险识别模型,识别输电线路基建现场的安全风险;其中,预设的安全风险识别模型采用基于深度学习算法的目标检测模型,增加目标分类网络的网络层数实现对安全风险图像的识别。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117152598A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Power transmission line capital construction site risk identification method and system based on image identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20XIAO&rft.date=2023-12-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117152598A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true