Power transmission line capital construction site risk identification method and system based on image identification
The invention belongs to the technical field of image recognition, and particularly relates to a power transmission line capital construction site risk recognition method and system based on image recognition, and the method comprises the steps: obtaining an image of a power transmission line capita...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG XIAO ZHOU XIONGTAO SU KAI JIANG ZHAOQING DU ZONGHAO CHEN YUEHUI TIAN XINDONG HAN ZIHAN ZHANG YONGFENG |
description | The invention belongs to the technical field of image recognition, and particularly relates to a power transmission line capital construction site risk recognition method and system based on image recognition, and the method comprises the steps: obtaining an image of a power transmission line capital construction site; marking the security risk of the obtained image to obtain a security risk image; according to the obtained safety risk image and a preset safety risk identification model, identifying the safety risk of the power transmission line capital construction site; wherein the preset security risk identification model adopts a target detection model based on a deep learning algorithm, and the network layer number of the target classification network is increased to realize identification of the security risk image.
本发明属于图像识别技术领域,具体涉及一种基于图像识别的输电线路基建现场风险识别方法及系统,包括:获取输电线路基建现场的图像;标记所获取的图像的安全风险,得到安全风险图像;根据所得到的安全风险图像和预设的安全风险识别模型,识别输电线路基建现场的安全风险;其中,预设的安全风险识别模型采用基于深度学习算法的目标检测模型,增加目标分类网络的网络层数实现对安全风险图像的识别。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117152598A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117152598A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117152598A3</originalsourceid><addsrcrecordid>eNqNyr8OAUEQgPFrFIJ3GA-gOHJBKReiEoX-MnbnmNidvezMRby9P1GpVF_x-4ZFf0x3ymAZRSOrchIILAQOOzYM4JKo5d7ZW5SNILPegD2JccsOPxDJrskDigd9qFGEMyp5eBFHvNDPPy4GLQalybejYrrbnur9jLrUkHboSMia-lCWy7KaV-vVZvHP8wSB-UZM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power transmission line capital construction site risk identification method and system based on image identification</title><source>esp@cenet</source><creator>ZHANG XIAO ; ZHOU XIONGTAO ; SU KAI ; JIANG ZHAOQING ; DU ZONGHAO ; CHEN YUEHUI ; TIAN XINDONG ; HAN ZIHAN ; ZHANG YONGFENG</creator><creatorcontrib>ZHANG XIAO ; ZHOU XIONGTAO ; SU KAI ; JIANG ZHAOQING ; DU ZONGHAO ; CHEN YUEHUI ; TIAN XINDONG ; HAN ZIHAN ; ZHANG YONGFENG</creatorcontrib><description>The invention belongs to the technical field of image recognition, and particularly relates to a power transmission line capital construction site risk recognition method and system based on image recognition, and the method comprises the steps: obtaining an image of a power transmission line capital construction site; marking the security risk of the obtained image to obtain a security risk image; according to the obtained safety risk image and a preset safety risk identification model, identifying the safety risk of the power transmission line capital construction site; wherein the preset security risk identification model adopts a target detection model based on a deep learning algorithm, and the network layer number of the target classification network is increased to realize identification of the security risk image.
本发明属于图像识别技术领域,具体涉及一种基于图像识别的输电线路基建现场风险识别方法及系统,包括:获取输电线路基建现场的图像;标记所获取的图像的安全风险,得到安全风险图像;根据所得到的安全风险图像和预设的安全风险识别模型,识别输电线路基建现场的安全风险;其中,预设的安全风险识别模型采用基于深度学习算法的目标检测模型,增加目标分类网络的网络层数实现对安全风险图像的识别。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231201&DB=EPODOC&CC=CN&NR=117152598A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231201&DB=EPODOC&CC=CN&NR=117152598A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG XIAO</creatorcontrib><creatorcontrib>ZHOU XIONGTAO</creatorcontrib><creatorcontrib>SU KAI</creatorcontrib><creatorcontrib>JIANG ZHAOQING</creatorcontrib><creatorcontrib>DU ZONGHAO</creatorcontrib><creatorcontrib>CHEN YUEHUI</creatorcontrib><creatorcontrib>TIAN XINDONG</creatorcontrib><creatorcontrib>HAN ZIHAN</creatorcontrib><creatorcontrib>ZHANG YONGFENG</creatorcontrib><title>Power transmission line capital construction site risk identification method and system based on image identification</title><description>The invention belongs to the technical field of image recognition, and particularly relates to a power transmission line capital construction site risk recognition method and system based on image recognition, and the method comprises the steps: obtaining an image of a power transmission line capital construction site; marking the security risk of the obtained image to obtain a security risk image; according to the obtained safety risk image and a preset safety risk identification model, identifying the safety risk of the power transmission line capital construction site; wherein the preset security risk identification model adopts a target detection model based on a deep learning algorithm, and the network layer number of the target classification network is increased to realize identification of the security risk image.
本发明属于图像识别技术领域,具体涉及一种基于图像识别的输电线路基建现场风险识别方法及系统,包括:获取输电线路基建现场的图像;标记所获取的图像的安全风险,得到安全风险图像;根据所得到的安全风险图像和预设的安全风险识别模型,识别输电线路基建现场的安全风险;其中,预设的安全风险识别模型采用基于深度学习算法的目标检测模型,增加目标分类网络的网络层数实现对安全风险图像的识别。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyr8OAUEQgPFrFIJ3GA-gOHJBKReiEoX-MnbnmNidvezMRby9P1GpVF_x-4ZFf0x3ymAZRSOrchIILAQOOzYM4JKo5d7ZW5SNILPegD2JccsOPxDJrskDigd9qFGEMyp5eBFHvNDPPy4GLQalybejYrrbnur9jLrUkHboSMia-lCWy7KaV-vVZvHP8wSB-UZM</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>ZHANG XIAO</creator><creator>ZHOU XIONGTAO</creator><creator>SU KAI</creator><creator>JIANG ZHAOQING</creator><creator>DU ZONGHAO</creator><creator>CHEN YUEHUI</creator><creator>TIAN XINDONG</creator><creator>HAN ZIHAN</creator><creator>ZHANG YONGFENG</creator><scope>EVB</scope></search><sort><creationdate>20231201</creationdate><title>Power transmission line capital construction site risk identification method and system based on image identification</title><author>ZHANG XIAO ; ZHOU XIONGTAO ; SU KAI ; JIANG ZHAOQING ; DU ZONGHAO ; CHEN YUEHUI ; TIAN XINDONG ; HAN ZIHAN ; ZHANG YONGFENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117152598A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG XIAO</creatorcontrib><creatorcontrib>ZHOU XIONGTAO</creatorcontrib><creatorcontrib>SU KAI</creatorcontrib><creatorcontrib>JIANG ZHAOQING</creatorcontrib><creatorcontrib>DU ZONGHAO</creatorcontrib><creatorcontrib>CHEN YUEHUI</creatorcontrib><creatorcontrib>TIAN XINDONG</creatorcontrib><creatorcontrib>HAN ZIHAN</creatorcontrib><creatorcontrib>ZHANG YONGFENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG XIAO</au><au>ZHOU XIONGTAO</au><au>SU KAI</au><au>JIANG ZHAOQING</au><au>DU ZONGHAO</au><au>CHEN YUEHUI</au><au>TIAN XINDONG</au><au>HAN ZIHAN</au><au>ZHANG YONGFENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power transmission line capital construction site risk identification method and system based on image identification</title><date>2023-12-01</date><risdate>2023</risdate><abstract>The invention belongs to the technical field of image recognition, and particularly relates to a power transmission line capital construction site risk recognition method and system based on image recognition, and the method comprises the steps: obtaining an image of a power transmission line capital construction site; marking the security risk of the obtained image to obtain a security risk image; according to the obtained safety risk image and a preset safety risk identification model, identifying the safety risk of the power transmission line capital construction site; wherein the preset security risk identification model adopts a target detection model based on a deep learning algorithm, and the network layer number of the target classification network is increased to realize identification of the security risk image.
本发明属于图像识别技术领域,具体涉及一种基于图像识别的输电线路基建现场风险识别方法及系统,包括:获取输电线路基建现场的图像;标记所获取的图像的安全风险,得到安全风险图像;根据所得到的安全风险图像和预设的安全风险识别模型,识别输电线路基建现场的安全风险;其中,预设的安全风险识别模型采用基于深度学习算法的目标检测模型,增加目标分类网络的网络层数实现对安全风险图像的识别。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117152598A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Power transmission line capital construction site risk identification method and system based on image identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20XIAO&rft.date=2023-12-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117152598A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |