Wind power plant climbing event prediction method based on data enhancement

The invention discloses a wind power plant climbing event prediction method based on data enhancement, and the method comprises the following steps: obtaining the historical power data of a wind power plant, and carrying out the data cleaning; carrying out segmented trend extraction on the wind powe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG CHU, ZHANG XINRONG, PENG TIAN, CHEN JIE, WANG YIWEI, CHEN SHUAI, WANG ZHENG, GE YIDA, CHEN JIALEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG CHU
ZHANG XINRONG
PENG TIAN
CHEN JIE
WANG YIWEI
CHEN SHUAI
WANG ZHENG
GE YIDA
CHEN JIALEI
description The invention discloses a wind power plant climbing event prediction method based on data enhancement, and the method comprises the following steps: obtaining the historical power data of a wind power plant, and carrying out the data cleaning; carrying out segmented trend extraction on the wind power data obtained in the previous step by using an MK-sliding window detection method, and carrying out climbing detection; constructing a time series generative adversarial network TimeGAN, performing data enhancement on the detected wind power climbing data, and dividing the data into a training set, a verification set and a test set; establishing an ETSform model, and inputting the obtained training set and the verification set into the ETSform model for training; a Logistic chaotic mapping strategy and a Gaussian-Cauchy mixed variation strategy are adopted to improve an artificial bee bird algorithm AHA to obtain an IAHA algorithm, the IAHA algorithm is utilized to optimize hyper-parameters of an ETSform model, a
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117117968A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117117968A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117117968A3</originalsourceid><addsrcrecordid>eNrjZPAOz8xLUSjIL08tUijIScwrUUjOycxNysxLV0gtSwVyC4pSUzKTSzLz8xRyU0sy8lMUkhKLU1MUgPyUxJJEhdS8jMS85NRcoFoeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhLv7GdoaA5ElmYWjsbEqAEAWz01dw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Wind power plant climbing event prediction method based on data enhancement</title><source>esp@cenet</source><creator>ZHANG CHU ; ZHANG XINRONG ; PENG TIAN ; CHEN JIE ; WANG YIWEI ; CHEN SHUAI ; WANG ZHENG ; GE YIDA ; CHEN JIALEI</creator><creatorcontrib>ZHANG CHU ; ZHANG XINRONG ; PENG TIAN ; CHEN JIE ; WANG YIWEI ; CHEN SHUAI ; WANG ZHENG ; GE YIDA ; CHEN JIALEI</creatorcontrib><description>The invention discloses a wind power plant climbing event prediction method based on data enhancement, and the method comprises the following steps: obtaining the historical power data of a wind power plant, and carrying out the data cleaning; carrying out segmented trend extraction on the wind power data obtained in the previous step by using an MK-sliding window detection method, and carrying out climbing detection; constructing a time series generative adversarial network TimeGAN, performing data enhancement on the detected wind power climbing data, and dividing the data into a training set, a verification set and a test set; establishing an ETSform model, and inputting the obtained training set and the verification set into the ETSform model for training; a Logistic chaotic mapping strategy and a Gaussian-Cauchy mixed variation strategy are adopted to improve an artificial bee bird algorithm AHA to obtain an IAHA algorithm, the IAHA algorithm is utilized to optimize hyper-parameters of an ETSform model, a</description><language>chi ; eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231124&amp;DB=EPODOC&amp;CC=CN&amp;NR=117117968A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231124&amp;DB=EPODOC&amp;CC=CN&amp;NR=117117968A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG CHU</creatorcontrib><creatorcontrib>ZHANG XINRONG</creatorcontrib><creatorcontrib>PENG TIAN</creatorcontrib><creatorcontrib>CHEN JIE</creatorcontrib><creatorcontrib>WANG YIWEI</creatorcontrib><creatorcontrib>CHEN SHUAI</creatorcontrib><creatorcontrib>WANG ZHENG</creatorcontrib><creatorcontrib>GE YIDA</creatorcontrib><creatorcontrib>CHEN JIALEI</creatorcontrib><title>Wind power plant climbing event prediction method based on data enhancement</title><description>The invention discloses a wind power plant climbing event prediction method based on data enhancement, and the method comprises the following steps: obtaining the historical power data of a wind power plant, and carrying out the data cleaning; carrying out segmented trend extraction on the wind power data obtained in the previous step by using an MK-sliding window detection method, and carrying out climbing detection; constructing a time series generative adversarial network TimeGAN, performing data enhancement on the detected wind power climbing data, and dividing the data into a training set, a verification set and a test set; establishing an ETSform model, and inputting the obtained training set and the verification set into the ETSform model for training; a Logistic chaotic mapping strategy and a Gaussian-Cauchy mixed variation strategy are adopted to improve an artificial bee bird algorithm AHA to obtain an IAHA algorithm, the IAHA algorithm is utilized to optimize hyper-parameters of an ETSform model, a</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAOz8xLUSjIL08tUijIScwrUUjOycxNysxLV0gtSwVyC4pSUzKTSzLz8xRyU0sy8lMUkhKLU1MUgPyUxJJEhdS8jMS85NRcoFoeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhLv7GdoaA5ElmYWjsbEqAEAWz01dw</recordid><startdate>20231124</startdate><enddate>20231124</enddate><creator>ZHANG CHU</creator><creator>ZHANG XINRONG</creator><creator>PENG TIAN</creator><creator>CHEN JIE</creator><creator>WANG YIWEI</creator><creator>CHEN SHUAI</creator><creator>WANG ZHENG</creator><creator>GE YIDA</creator><creator>CHEN JIALEI</creator><scope>EVB</scope></search><sort><creationdate>20231124</creationdate><title>Wind power plant climbing event prediction method based on data enhancement</title><author>ZHANG CHU ; ZHANG XINRONG ; PENG TIAN ; CHEN JIE ; WANG YIWEI ; CHEN SHUAI ; WANG ZHENG ; GE YIDA ; CHEN JIALEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117117968A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG CHU</creatorcontrib><creatorcontrib>ZHANG XINRONG</creatorcontrib><creatorcontrib>PENG TIAN</creatorcontrib><creatorcontrib>CHEN JIE</creatorcontrib><creatorcontrib>WANG YIWEI</creatorcontrib><creatorcontrib>CHEN SHUAI</creatorcontrib><creatorcontrib>WANG ZHENG</creatorcontrib><creatorcontrib>GE YIDA</creatorcontrib><creatorcontrib>CHEN JIALEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG CHU</au><au>ZHANG XINRONG</au><au>PENG TIAN</au><au>CHEN JIE</au><au>WANG YIWEI</au><au>CHEN SHUAI</au><au>WANG ZHENG</au><au>GE YIDA</au><au>CHEN JIALEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Wind power plant climbing event prediction method based on data enhancement</title><date>2023-11-24</date><risdate>2023</risdate><abstract>The invention discloses a wind power plant climbing event prediction method based on data enhancement, and the method comprises the following steps: obtaining the historical power data of a wind power plant, and carrying out the data cleaning; carrying out segmented trend extraction on the wind power data obtained in the previous step by using an MK-sliding window detection method, and carrying out climbing detection; constructing a time series generative adversarial network TimeGAN, performing data enhancement on the detected wind power climbing data, and dividing the data into a training set, a verification set and a test set; establishing an ETSform model, and inputting the obtained training set and the verification set into the ETSform model for training; a Logistic chaotic mapping strategy and a Gaussian-Cauchy mixed variation strategy are adopted to improve an artificial bee bird algorithm AHA to obtain an IAHA algorithm, the IAHA algorithm is utilized to optimize hyper-parameters of an ETSform model, a</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117117968A
source esp@cenet
subjects CALCULATING
CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
GENERATION
PHYSICS
SYSTEMS FOR STORING ELECTRIC ENERGY
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Wind power plant climbing event prediction method based on data enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20CHU&rft.date=2023-11-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117117968A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true