Wind power plant climbing event prediction method based on data enhancement
The invention discloses a wind power plant climbing event prediction method based on data enhancement, and the method comprises the following steps: obtaining the historical power data of a wind power plant, and carrying out the data cleaning; carrying out segmented trend extraction on the wind powe...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG CHU ZHANG XINRONG PENG TIAN CHEN JIE WANG YIWEI CHEN SHUAI WANG ZHENG GE YIDA CHEN JIALEI |
description | The invention discloses a wind power plant climbing event prediction method based on data enhancement, and the method comprises the following steps: obtaining the historical power data of a wind power plant, and carrying out the data cleaning; carrying out segmented trend extraction on the wind power data obtained in the previous step by using an MK-sliding window detection method, and carrying out climbing detection; constructing a time series generative adversarial network TimeGAN, performing data enhancement on the detected wind power climbing data, and dividing the data into a training set, a verification set and a test set; establishing an ETSform model, and inputting the obtained training set and the verification set into the ETSform model for training; a Logistic chaotic mapping strategy and a Gaussian-Cauchy mixed variation strategy are adopted to improve an artificial bee bird algorithm AHA to obtain an IAHA algorithm, the IAHA algorithm is utilized to optimize hyper-parameters of an ETSform model, a |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117117968A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117117968A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117117968A3</originalsourceid><addsrcrecordid>eNrjZPAOz8xLUSjIL08tUijIScwrUUjOycxNysxLV0gtSwVyC4pSUzKTSzLz8xRyU0sy8lMUkhKLU1MUgPyUxJJEhdS8jMS85NRcoFoeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhLv7GdoaA5ElmYWjsbEqAEAWz01dw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Wind power plant climbing event prediction method based on data enhancement</title><source>esp@cenet</source><creator>ZHANG CHU ; ZHANG XINRONG ; PENG TIAN ; CHEN JIE ; WANG YIWEI ; CHEN SHUAI ; WANG ZHENG ; GE YIDA ; CHEN JIALEI</creator><creatorcontrib>ZHANG CHU ; ZHANG XINRONG ; PENG TIAN ; CHEN JIE ; WANG YIWEI ; CHEN SHUAI ; WANG ZHENG ; GE YIDA ; CHEN JIALEI</creatorcontrib><description>The invention discloses a wind power plant climbing event prediction method based on data enhancement, and the method comprises the following steps: obtaining the historical power data of a wind power plant, and carrying out the data cleaning; carrying out segmented trend extraction on the wind power data obtained in the previous step by using an MK-sliding window detection method, and carrying out climbing detection; constructing a time series generative adversarial network TimeGAN, performing data enhancement on the detected wind power climbing data, and dividing the data into a training set, a verification set and a test set; establishing an ETSform model, and inputting the obtained training set and the verification set into the ETSform model for training; a Logistic chaotic mapping strategy and a Gaussian-Cauchy mixed variation strategy are adopted to improve an artificial bee bird algorithm AHA to obtain an IAHA algorithm, the IAHA algorithm is utilized to optimize hyper-parameters of an ETSform model, a</description><language>chi ; eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231124&DB=EPODOC&CC=CN&NR=117117968A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231124&DB=EPODOC&CC=CN&NR=117117968A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG CHU</creatorcontrib><creatorcontrib>ZHANG XINRONG</creatorcontrib><creatorcontrib>PENG TIAN</creatorcontrib><creatorcontrib>CHEN JIE</creatorcontrib><creatorcontrib>WANG YIWEI</creatorcontrib><creatorcontrib>CHEN SHUAI</creatorcontrib><creatorcontrib>WANG ZHENG</creatorcontrib><creatorcontrib>GE YIDA</creatorcontrib><creatorcontrib>CHEN JIALEI</creatorcontrib><title>Wind power plant climbing event prediction method based on data enhancement</title><description>The invention discloses a wind power plant climbing event prediction method based on data enhancement, and the method comprises the following steps: obtaining the historical power data of a wind power plant, and carrying out the data cleaning; carrying out segmented trend extraction on the wind power data obtained in the previous step by using an MK-sliding window detection method, and carrying out climbing detection; constructing a time series generative adversarial network TimeGAN, performing data enhancement on the detected wind power climbing data, and dividing the data into a training set, a verification set and a test set; establishing an ETSform model, and inputting the obtained training set and the verification set into the ETSform model for training; a Logistic chaotic mapping strategy and a Gaussian-Cauchy mixed variation strategy are adopted to improve an artificial bee bird algorithm AHA to obtain an IAHA algorithm, the IAHA algorithm is utilized to optimize hyper-parameters of an ETSform model, a</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAOz8xLUSjIL08tUijIScwrUUjOycxNysxLV0gtSwVyC4pSUzKTSzLz8xRyU0sy8lMUkhKLU1MUgPyUxJJEhdS8jMS85NRcoFoeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhLv7GdoaA5ElmYWjsbEqAEAWz01dw</recordid><startdate>20231124</startdate><enddate>20231124</enddate><creator>ZHANG CHU</creator><creator>ZHANG XINRONG</creator><creator>PENG TIAN</creator><creator>CHEN JIE</creator><creator>WANG YIWEI</creator><creator>CHEN SHUAI</creator><creator>WANG ZHENG</creator><creator>GE YIDA</creator><creator>CHEN JIALEI</creator><scope>EVB</scope></search><sort><creationdate>20231124</creationdate><title>Wind power plant climbing event prediction method based on data enhancement</title><author>ZHANG CHU ; ZHANG XINRONG ; PENG TIAN ; CHEN JIE ; WANG YIWEI ; CHEN SHUAI ; WANG ZHENG ; GE YIDA ; CHEN JIALEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117117968A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG CHU</creatorcontrib><creatorcontrib>ZHANG XINRONG</creatorcontrib><creatorcontrib>PENG TIAN</creatorcontrib><creatorcontrib>CHEN JIE</creatorcontrib><creatorcontrib>WANG YIWEI</creatorcontrib><creatorcontrib>CHEN SHUAI</creatorcontrib><creatorcontrib>WANG ZHENG</creatorcontrib><creatorcontrib>GE YIDA</creatorcontrib><creatorcontrib>CHEN JIALEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG CHU</au><au>ZHANG XINRONG</au><au>PENG TIAN</au><au>CHEN JIE</au><au>WANG YIWEI</au><au>CHEN SHUAI</au><au>WANG ZHENG</au><au>GE YIDA</au><au>CHEN JIALEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Wind power plant climbing event prediction method based on data enhancement</title><date>2023-11-24</date><risdate>2023</risdate><abstract>The invention discloses a wind power plant climbing event prediction method based on data enhancement, and the method comprises the following steps: obtaining the historical power data of a wind power plant, and carrying out the data cleaning; carrying out segmented trend extraction on the wind power data obtained in the previous step by using an MK-sliding window detection method, and carrying out climbing detection; constructing a time series generative adversarial network TimeGAN, performing data enhancement on the detected wind power climbing data, and dividing the data into a training set, a verification set and a test set; establishing an ETSform model, and inputting the obtained training set and the verification set into the ETSform model for training; a Logistic chaotic mapping strategy and a Gaussian-Cauchy mixed variation strategy are adopted to improve an artificial bee bird algorithm AHA to obtain an IAHA algorithm, the IAHA algorithm is utilized to optimize hyper-parameters of an ETSform model, a</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117117968A |
source | esp@cenet |
subjects | CALCULATING CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONVERSION OR DISTRIBUTION OF ELECTRIC POWER COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY GENERATION PHYSICS SYSTEMS FOR STORING ELECTRIC ENERGY SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Wind power plant climbing event prediction method based on data enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20CHU&rft.date=2023-11-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117117968A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |