External damage hidden danger source image recognition method and device, medium and terminal equipment

The invention discloses an external damage hidden danger source image recognition method and device, a medium and terminal equipment. The method comprises the following steps: introducing an ECA attention mechanism to improve weights corresponding to different channel features in a YOLO network; tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN YILONG, LEE CHANG-WOOK, LIAO RUCHAO, RAO CHENGCHENG, LI DUANJIAO, LU HENGJIA, LIU GAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN YILONG
LEE CHANG-WOOK
LIAO RUCHAO
RAO CHENGCHENG
LI DUANJIAO
LU HENGJIA
LIU GAO
description The invention discloses an external damage hidden danger source image recognition method and device, a medium and terminal equipment. The method comprises the following steps: introducing an ECA attention mechanism to improve weights corresponding to different channel features in a YOLO network; training the YOLO network by using the marked external damage hidden danger source image data set to obtain a target parameter and a target weight of the YOLO network; performing form conversion on the trained YOLO network by using a TensorRT optimizer; and deploying the converted YOLO network to an identification terminal, and identifying an external damage hidden danger source image through the identification terminal. According to the invention, the YOLO network after structure improvement, data training and model conversion is deployed to the identification terminal to detect the external damage hidden danger source in real time, and the problem of current external damage hidden danger source identification is eff
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117115545A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117115545A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117115545A3</originalsourceid><addsrcrecordid>eNqNjLEKwkAQRNNYiPoPa6_FocFaQsTKyj4ct-NlIbcXLxfx843BD7Aa5s3wloWv3xlJbUdsg_WgVpihU1OPREMckwPJPCW46FWyRKWA3EYmq0yMlzjsJsQyhhlNyiBfKZ6j9AGa18XiYbsBm1-uiu2lvlfXPfrYYOitgyI31c2YkzFleSzPh38-H6NxP9Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>External damage hidden danger source image recognition method and device, medium and terminal equipment</title><source>esp@cenet</source><creator>CHEN YILONG ; LEE CHANG-WOOK ; LIAO RUCHAO ; RAO CHENGCHENG ; LI DUANJIAO ; LU HENGJIA ; LIU GAO</creator><creatorcontrib>CHEN YILONG ; LEE CHANG-WOOK ; LIAO RUCHAO ; RAO CHENGCHENG ; LI DUANJIAO ; LU HENGJIA ; LIU GAO</creatorcontrib><description>The invention discloses an external damage hidden danger source image recognition method and device, a medium and terminal equipment. The method comprises the following steps: introducing an ECA attention mechanism to improve weights corresponding to different channel features in a YOLO network; training the YOLO network by using the marked external damage hidden danger source image data set to obtain a target parameter and a target weight of the YOLO network; performing form conversion on the trained YOLO network by using a TensorRT optimizer; and deploying the converted YOLO network to an identification terminal, and identifying an external damage hidden danger source image through the identification terminal. According to the invention, the YOLO network after structure improvement, data training and model conversion is deployed to the identification terminal to detect the external damage hidden danger source in real time, and the problem of current external damage hidden danger source identification is eff</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231124&amp;DB=EPODOC&amp;CC=CN&amp;NR=117115545A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231124&amp;DB=EPODOC&amp;CC=CN&amp;NR=117115545A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN YILONG</creatorcontrib><creatorcontrib>LEE CHANG-WOOK</creatorcontrib><creatorcontrib>LIAO RUCHAO</creatorcontrib><creatorcontrib>RAO CHENGCHENG</creatorcontrib><creatorcontrib>LI DUANJIAO</creatorcontrib><creatorcontrib>LU HENGJIA</creatorcontrib><creatorcontrib>LIU GAO</creatorcontrib><title>External damage hidden danger source image recognition method and device, medium and terminal equipment</title><description>The invention discloses an external damage hidden danger source image recognition method and device, a medium and terminal equipment. The method comprises the following steps: introducing an ECA attention mechanism to improve weights corresponding to different channel features in a YOLO network; training the YOLO network by using the marked external damage hidden danger source image data set to obtain a target parameter and a target weight of the YOLO network; performing form conversion on the trained YOLO network by using a TensorRT optimizer; and deploying the converted YOLO network to an identification terminal, and identifying an external damage hidden danger source image through the identification terminal. According to the invention, the YOLO network after structure improvement, data training and model conversion is deployed to the identification terminal to detect the external damage hidden danger source in real time, and the problem of current external damage hidden danger source identification is eff</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwkAQRNNYiPoPa6_FocFaQsTKyj4ct-NlIbcXLxfx843BD7Aa5s3wloWv3xlJbUdsg_WgVpihU1OPREMckwPJPCW46FWyRKWA3EYmq0yMlzjsJsQyhhlNyiBfKZ6j9AGa18XiYbsBm1-uiu2lvlfXPfrYYOitgyI31c2YkzFleSzPh38-H6NxP9Y</recordid><startdate>20231124</startdate><enddate>20231124</enddate><creator>CHEN YILONG</creator><creator>LEE CHANG-WOOK</creator><creator>LIAO RUCHAO</creator><creator>RAO CHENGCHENG</creator><creator>LI DUANJIAO</creator><creator>LU HENGJIA</creator><creator>LIU GAO</creator><scope>EVB</scope></search><sort><creationdate>20231124</creationdate><title>External damage hidden danger source image recognition method and device, medium and terminal equipment</title><author>CHEN YILONG ; LEE CHANG-WOOK ; LIAO RUCHAO ; RAO CHENGCHENG ; LI DUANJIAO ; LU HENGJIA ; LIU GAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117115545A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN YILONG</creatorcontrib><creatorcontrib>LEE CHANG-WOOK</creatorcontrib><creatorcontrib>LIAO RUCHAO</creatorcontrib><creatorcontrib>RAO CHENGCHENG</creatorcontrib><creatorcontrib>LI DUANJIAO</creatorcontrib><creatorcontrib>LU HENGJIA</creatorcontrib><creatorcontrib>LIU GAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN YILONG</au><au>LEE CHANG-WOOK</au><au>LIAO RUCHAO</au><au>RAO CHENGCHENG</au><au>LI DUANJIAO</au><au>LU HENGJIA</au><au>LIU GAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>External damage hidden danger source image recognition method and device, medium and terminal equipment</title><date>2023-11-24</date><risdate>2023</risdate><abstract>The invention discloses an external damage hidden danger source image recognition method and device, a medium and terminal equipment. The method comprises the following steps: introducing an ECA attention mechanism to improve weights corresponding to different channel features in a YOLO network; training the YOLO network by using the marked external damage hidden danger source image data set to obtain a target parameter and a target weight of the YOLO network; performing form conversion on the trained YOLO network by using a TensorRT optimizer; and deploying the converted YOLO network to an identification terminal, and identifying an external damage hidden danger source image through the identification terminal. According to the invention, the YOLO network after structure improvement, data training and model conversion is deployed to the identification terminal to detect the external damage hidden danger source in real time, and the problem of current external damage hidden danger source identification is eff</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117115545A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title External damage hidden danger source image recognition method and device, medium and terminal equipment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20YILONG&rft.date=2023-11-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117115545A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true