External damage hidden danger source image recognition method and device, medium and terminal equipment
The invention discloses an external damage hidden danger source image recognition method and device, a medium and terminal equipment. The method comprises the following steps: introducing an ECA attention mechanism to improve weights corresponding to different channel features in a YOLO network; tra...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHEN YILONG LEE CHANG-WOOK LIAO RUCHAO RAO CHENGCHENG LI DUANJIAO LU HENGJIA LIU GAO |
description | The invention discloses an external damage hidden danger source image recognition method and device, a medium and terminal equipment. The method comprises the following steps: introducing an ECA attention mechanism to improve weights corresponding to different channel features in a YOLO network; training the YOLO network by using the marked external damage hidden danger source image data set to obtain a target parameter and a target weight of the YOLO network; performing form conversion on the trained YOLO network by using a TensorRT optimizer; and deploying the converted YOLO network to an identification terminal, and identifying an external damage hidden danger source image through the identification terminal. According to the invention, the YOLO network after structure improvement, data training and model conversion is deployed to the identification terminal to detect the external damage hidden danger source in real time, and the problem of current external damage hidden danger source identification is eff |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117115545A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117115545A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117115545A3</originalsourceid><addsrcrecordid>eNqNjLEKwkAQRNNYiPoPa6_FocFaQsTKyj4ct-NlIbcXLxfx843BD7Aa5s3wloWv3xlJbUdsg_WgVpihU1OPREMckwPJPCW46FWyRKWA3EYmq0yMlzjsJsQyhhlNyiBfKZ6j9AGa18XiYbsBm1-uiu2lvlfXPfrYYOitgyI31c2YkzFleSzPh38-H6NxP9Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>External damage hidden danger source image recognition method and device, medium and terminal equipment</title><source>esp@cenet</source><creator>CHEN YILONG ; LEE CHANG-WOOK ; LIAO RUCHAO ; RAO CHENGCHENG ; LI DUANJIAO ; LU HENGJIA ; LIU GAO</creator><creatorcontrib>CHEN YILONG ; LEE CHANG-WOOK ; LIAO RUCHAO ; RAO CHENGCHENG ; LI DUANJIAO ; LU HENGJIA ; LIU GAO</creatorcontrib><description>The invention discloses an external damage hidden danger source image recognition method and device, a medium and terminal equipment. The method comprises the following steps: introducing an ECA attention mechanism to improve weights corresponding to different channel features in a YOLO network; training the YOLO network by using the marked external damage hidden danger source image data set to obtain a target parameter and a target weight of the YOLO network; performing form conversion on the trained YOLO network by using a TensorRT optimizer; and deploying the converted YOLO network to an identification terminal, and identifying an external damage hidden danger source image through the identification terminal. According to the invention, the YOLO network after structure improvement, data training and model conversion is deployed to the identification terminal to detect the external damage hidden danger source in real time, and the problem of current external damage hidden danger source identification is eff</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231124&DB=EPODOC&CC=CN&NR=117115545A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231124&DB=EPODOC&CC=CN&NR=117115545A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN YILONG</creatorcontrib><creatorcontrib>LEE CHANG-WOOK</creatorcontrib><creatorcontrib>LIAO RUCHAO</creatorcontrib><creatorcontrib>RAO CHENGCHENG</creatorcontrib><creatorcontrib>LI DUANJIAO</creatorcontrib><creatorcontrib>LU HENGJIA</creatorcontrib><creatorcontrib>LIU GAO</creatorcontrib><title>External damage hidden danger source image recognition method and device, medium and terminal equipment</title><description>The invention discloses an external damage hidden danger source image recognition method and device, a medium and terminal equipment. The method comprises the following steps: introducing an ECA attention mechanism to improve weights corresponding to different channel features in a YOLO network; training the YOLO network by using the marked external damage hidden danger source image data set to obtain a target parameter and a target weight of the YOLO network; performing form conversion on the trained YOLO network by using a TensorRT optimizer; and deploying the converted YOLO network to an identification terminal, and identifying an external damage hidden danger source image through the identification terminal. According to the invention, the YOLO network after structure improvement, data training and model conversion is deployed to the identification terminal to detect the external damage hidden danger source in real time, and the problem of current external damage hidden danger source identification is eff</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwkAQRNNYiPoPa6_FocFaQsTKyj4ct-NlIbcXLxfx843BD7Aa5s3wloWv3xlJbUdsg_WgVpihU1OPREMckwPJPCW46FWyRKWA3EYmq0yMlzjsJsQyhhlNyiBfKZ6j9AGa18XiYbsBm1-uiu2lvlfXPfrYYOitgyI31c2YkzFleSzPh38-H6NxP9Y</recordid><startdate>20231124</startdate><enddate>20231124</enddate><creator>CHEN YILONG</creator><creator>LEE CHANG-WOOK</creator><creator>LIAO RUCHAO</creator><creator>RAO CHENGCHENG</creator><creator>LI DUANJIAO</creator><creator>LU HENGJIA</creator><creator>LIU GAO</creator><scope>EVB</scope></search><sort><creationdate>20231124</creationdate><title>External damage hidden danger source image recognition method and device, medium and terminal equipment</title><author>CHEN YILONG ; LEE CHANG-WOOK ; LIAO RUCHAO ; RAO CHENGCHENG ; LI DUANJIAO ; LU HENGJIA ; LIU GAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117115545A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN YILONG</creatorcontrib><creatorcontrib>LEE CHANG-WOOK</creatorcontrib><creatorcontrib>LIAO RUCHAO</creatorcontrib><creatorcontrib>RAO CHENGCHENG</creatorcontrib><creatorcontrib>LI DUANJIAO</creatorcontrib><creatorcontrib>LU HENGJIA</creatorcontrib><creatorcontrib>LIU GAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN YILONG</au><au>LEE CHANG-WOOK</au><au>LIAO RUCHAO</au><au>RAO CHENGCHENG</au><au>LI DUANJIAO</au><au>LU HENGJIA</au><au>LIU GAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>External damage hidden danger source image recognition method and device, medium and terminal equipment</title><date>2023-11-24</date><risdate>2023</risdate><abstract>The invention discloses an external damage hidden danger source image recognition method and device, a medium and terminal equipment. The method comprises the following steps: introducing an ECA attention mechanism to improve weights corresponding to different channel features in a YOLO network; training the YOLO network by using the marked external damage hidden danger source image data set to obtain a target parameter and a target weight of the YOLO network; performing form conversion on the trained YOLO network by using a TensorRT optimizer; and deploying the converted YOLO network to an identification terminal, and identifying an external damage hidden danger source image through the identification terminal. According to the invention, the YOLO network after structure improvement, data training and model conversion is deployed to the identification terminal to detect the external damage hidden danger source in real time, and the problem of current external damage hidden danger source identification is eff</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117115545A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | External damage hidden danger source image recognition method and device, medium and terminal equipment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20YILONG&rft.date=2023-11-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117115545A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |