Federal learning method and system for e-commerce platform

The invention relates to a federal learning method and system for an e-commerce platform, and relates to the technical field of data security and privacy protection, and the method comprises the steps: generating a non-independent identically distributed data model according to the type of a client,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIANG HUANGHUANG, CHENG DAZHAO, HU CHUANG, XU FENG, YAN WEILIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIANG HUANGHUANG
CHENG DAZHAO
HU CHUANG
XU FENG
YAN WEILIN
description The invention relates to a federal learning method and system for an e-commerce platform, and relates to the technical field of data security and privacy protection, and the method comprises the steps: generating a non-independent identically distributed data model according to the type of a client, and obtaining a skewness value of the client; selecting a plurality of clients from the client pool as training data providers according to the meta-parameters; and evaluating an output result of the federal learning model, and feeding back and adjusting meta parameters until a model evaluation result reaches an expectation. According to the method, the data isomerism of the client is deduced and privacy protection is performed by constructing the non-independent identically distributed data model aiming at the data characteristics of the e-commerce platform, and the quality of the training data is improved by introducing the meta-parameter balance federated learning model to train the required data volume and the
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117114132A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117114132A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117114132A3</originalsourceid><addsrcrecordid>eNrjZLByS01JLUrMUchJTSzKy8xLV8hNLcnIT1FIzEtRKK4sLknNVUjLL1JI1U3Oz81NLUpOVSjISSwBCuXyMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JJ4Zz9DQ3NDQxNDYyNHY2LUAABgSy7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Federal learning method and system for e-commerce platform</title><source>esp@cenet</source><creator>LIANG HUANGHUANG ; CHENG DAZHAO ; HU CHUANG ; XU FENG ; YAN WEILIN</creator><creatorcontrib>LIANG HUANGHUANG ; CHENG DAZHAO ; HU CHUANG ; XU FENG ; YAN WEILIN</creatorcontrib><description>The invention relates to a federal learning method and system for an e-commerce platform, and relates to the technical field of data security and privacy protection, and the method comprises the steps: generating a non-independent identically distributed data model according to the type of a client, and obtaining a skewness value of the client; selecting a plurality of clients from the client pool as training data providers according to the meta-parameters; and evaluating an output result of the federal learning model, and feeding back and adjusting meta parameters until a model evaluation result reaches an expectation. According to the method, the data isomerism of the client is deduced and privacy protection is performed by constructing the non-independent identically distributed data model aiming at the data characteristics of the e-commerce platform, and the quality of the training data is improved by introducing the meta-parameter balance federated learning model to train the required data volume and the</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231124&amp;DB=EPODOC&amp;CC=CN&amp;NR=117114132A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231124&amp;DB=EPODOC&amp;CC=CN&amp;NR=117114132A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIANG HUANGHUANG</creatorcontrib><creatorcontrib>CHENG DAZHAO</creatorcontrib><creatorcontrib>HU CHUANG</creatorcontrib><creatorcontrib>XU FENG</creatorcontrib><creatorcontrib>YAN WEILIN</creatorcontrib><title>Federal learning method and system for e-commerce platform</title><description>The invention relates to a federal learning method and system for an e-commerce platform, and relates to the technical field of data security and privacy protection, and the method comprises the steps: generating a non-independent identically distributed data model according to the type of a client, and obtaining a skewness value of the client; selecting a plurality of clients from the client pool as training data providers according to the meta-parameters; and evaluating an output result of the federal learning model, and feeding back and adjusting meta parameters until a model evaluation result reaches an expectation. According to the method, the data isomerism of the client is deduced and privacy protection is performed by constructing the non-independent identically distributed data model aiming at the data characteristics of the e-commerce platform, and the quality of the training data is improved by introducing the meta-parameter balance federated learning model to train the required data volume and the</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLByS01JLUrMUchJTSzKy8xLV8hNLcnIT1FIzEtRKK4sLknNVUjLL1JI1U3Oz81NLUpOVSjISSwBCuXyMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JJ4Zz9DQ3NDQxNDYyNHY2LUAABgSy7Q</recordid><startdate>20231124</startdate><enddate>20231124</enddate><creator>LIANG HUANGHUANG</creator><creator>CHENG DAZHAO</creator><creator>HU CHUANG</creator><creator>XU FENG</creator><creator>YAN WEILIN</creator><scope>EVB</scope></search><sort><creationdate>20231124</creationdate><title>Federal learning method and system for e-commerce platform</title><author>LIANG HUANGHUANG ; CHENG DAZHAO ; HU CHUANG ; XU FENG ; YAN WEILIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117114132A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIANG HUANGHUANG</creatorcontrib><creatorcontrib>CHENG DAZHAO</creatorcontrib><creatorcontrib>HU CHUANG</creatorcontrib><creatorcontrib>XU FENG</creatorcontrib><creatorcontrib>YAN WEILIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIANG HUANGHUANG</au><au>CHENG DAZHAO</au><au>HU CHUANG</au><au>XU FENG</au><au>YAN WEILIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Federal learning method and system for e-commerce platform</title><date>2023-11-24</date><risdate>2023</risdate><abstract>The invention relates to a federal learning method and system for an e-commerce platform, and relates to the technical field of data security and privacy protection, and the method comprises the steps: generating a non-independent identically distributed data model according to the type of a client, and obtaining a skewness value of the client; selecting a plurality of clients from the client pool as training data providers according to the meta-parameters; and evaluating an output result of the federal learning model, and feeding back and adjusting meta parameters until a model evaluation result reaches an expectation. According to the method, the data isomerism of the client is deduced and privacy protection is performed by constructing the non-independent identically distributed data model aiming at the data characteristics of the e-commerce platform, and the quality of the training data is improved by introducing the meta-parameter balance federated learning model to train the required data volume and the</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117114132A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Federal learning method and system for e-commerce platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIANG%20HUANGHUANG&rft.date=2023-11-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117114132A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true