Particle swarm optimization method, system and device based on GPU end acceleration and medium

The invention relates to a particle swarm optimization method, system and device based on GPU end acceleration and a medium, the method firstly migrates data initialization operation to a GPU end to reduce IO loss, then a thread self-adaption and thread multiplexing module is added, and the executio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WU JIA, YANG SHUOPENG, ZHANG FUQIANG, LIU YE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WU JIA
YANG SHUOPENG
ZHANG FUQIANG
LIU YE
description The invention relates to a particle swarm optimization method, system and device based on GPU end acceleration and a medium, the method firstly migrates data initialization operation to a GPU end to reduce IO loss, then a thread self-adaption and thread multiplexing module is added, and the execution efficiency of a traditional PSO algorithm in the parallel computing process of a large number of particles is further improved from the thread management angle; the system, the device and the medium are used for realizing the particle swarm optimization method based on GPU end acceleration. According to the method, the practical applicability of the PSO algorithm is improved, and the method has an absolute advantage in efficiency in a complex optimization problem. 一种基于GPU端加速的粒子群优化方法、系统、设备及介质,该方法首先将数据初始化操作迁移到GPU端,减少IO的损失,随后又加入了线程自适应与线程复用模块,从线程管理角度进一步提高了传统PSO算法在大量粒子并行计算过程中的执行效率;本发明的系统、设备及介质用于实现上述基于GPU端加速的粒子群的优化方法;本发明提高了PSO算法的实际适用性,在复杂优化问题中具有效率上的绝对优势。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117112195A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117112195A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117112195A3</originalsourceid><addsrcrecordid>eNqNy7sKAjEUhOE0FqK-w7HXIorIlrJ4qWQLbV2OyYiB3Eiiok_vij6A1cDPN31xajgVoywoPzg5CrEYZ15cTPDkUK5BTyg_c4Ej9po07kaBzpyhqSPb5kjoOisFi_T9faCDNjc3FL0L24zRbwdivFkf6t0UMbTIkRU8SlvvpVxKOZPVYjX_x7wBBWw79A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Particle swarm optimization method, system and device based on GPU end acceleration and medium</title><source>esp@cenet</source><creator>WU JIA ; YANG SHUOPENG ; ZHANG FUQIANG ; LIU YE</creator><creatorcontrib>WU JIA ; YANG SHUOPENG ; ZHANG FUQIANG ; LIU YE</creatorcontrib><description>The invention relates to a particle swarm optimization method, system and device based on GPU end acceleration and a medium, the method firstly migrates data initialization operation to a GPU end to reduce IO loss, then a thread self-adaption and thread multiplexing module is added, and the execution efficiency of a traditional PSO algorithm in the parallel computing process of a large number of particles is further improved from the thread management angle; the system, the device and the medium are used for realizing the particle swarm optimization method based on GPU end acceleration. According to the method, the practical applicability of the PSO algorithm is improved, and the method has an absolute advantage in efficiency in a complex optimization problem. 一种基于GPU端加速的粒子群优化方法、系统、设备及介质,该方法首先将数据初始化操作迁移到GPU端,减少IO的损失,随后又加入了线程自适应与线程复用模块,从线程管理角度进一步提高了传统PSO算法在大量粒子并行计算过程中的执行效率;本发明的系统、设备及介质用于实现上述基于GPU端加速的粒子群的优化方法;本发明提高了PSO算法的实际适用性,在复杂优化问题中具有效率上的绝对优势。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231124&amp;DB=EPODOC&amp;CC=CN&amp;NR=117112195A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231124&amp;DB=EPODOC&amp;CC=CN&amp;NR=117112195A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WU JIA</creatorcontrib><creatorcontrib>YANG SHUOPENG</creatorcontrib><creatorcontrib>ZHANG FUQIANG</creatorcontrib><creatorcontrib>LIU YE</creatorcontrib><title>Particle swarm optimization method, system and device based on GPU end acceleration and medium</title><description>The invention relates to a particle swarm optimization method, system and device based on GPU end acceleration and a medium, the method firstly migrates data initialization operation to a GPU end to reduce IO loss, then a thread self-adaption and thread multiplexing module is added, and the execution efficiency of a traditional PSO algorithm in the parallel computing process of a large number of particles is further improved from the thread management angle; the system, the device and the medium are used for realizing the particle swarm optimization method based on GPU end acceleration. According to the method, the practical applicability of the PSO algorithm is improved, and the method has an absolute advantage in efficiency in a complex optimization problem. 一种基于GPU端加速的粒子群优化方法、系统、设备及介质,该方法首先将数据初始化操作迁移到GPU端,减少IO的损失,随后又加入了线程自适应与线程复用模块,从线程管理角度进一步提高了传统PSO算法在大量粒子并行计算过程中的执行效率;本发明的系统、设备及介质用于实现上述基于GPU端加速的粒子群的优化方法;本发明提高了PSO算法的实际适用性,在复杂优化问题中具有效率上的绝对优势。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7sKAjEUhOE0FqK-w7HXIorIlrJ4qWQLbV2OyYiB3Eiiok_vij6A1cDPN31xajgVoywoPzg5CrEYZ15cTPDkUK5BTyg_c4Ej9po07kaBzpyhqSPb5kjoOisFi_T9faCDNjc3FL0L24zRbwdivFkf6t0UMbTIkRU8SlvvpVxKOZPVYjX_x7wBBWw79A</recordid><startdate>20231124</startdate><enddate>20231124</enddate><creator>WU JIA</creator><creator>YANG SHUOPENG</creator><creator>ZHANG FUQIANG</creator><creator>LIU YE</creator><scope>EVB</scope></search><sort><creationdate>20231124</creationdate><title>Particle swarm optimization method, system and device based on GPU end acceleration and medium</title><author>WU JIA ; YANG SHUOPENG ; ZHANG FUQIANG ; LIU YE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117112195A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WU JIA</creatorcontrib><creatorcontrib>YANG SHUOPENG</creatorcontrib><creatorcontrib>ZHANG FUQIANG</creatorcontrib><creatorcontrib>LIU YE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WU JIA</au><au>YANG SHUOPENG</au><au>ZHANG FUQIANG</au><au>LIU YE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Particle swarm optimization method, system and device based on GPU end acceleration and medium</title><date>2023-11-24</date><risdate>2023</risdate><abstract>The invention relates to a particle swarm optimization method, system and device based on GPU end acceleration and a medium, the method firstly migrates data initialization operation to a GPU end to reduce IO loss, then a thread self-adaption and thread multiplexing module is added, and the execution efficiency of a traditional PSO algorithm in the parallel computing process of a large number of particles is further improved from the thread management angle; the system, the device and the medium are used for realizing the particle swarm optimization method based on GPU end acceleration. According to the method, the practical applicability of the PSO algorithm is improved, and the method has an absolute advantage in efficiency in a complex optimization problem. 一种基于GPU端加速的粒子群优化方法、系统、设备及介质,该方法首先将数据初始化操作迁移到GPU端,减少IO的损失,随后又加入了线程自适应与线程复用模块,从线程管理角度进一步提高了传统PSO算法在大量粒子并行计算过程中的执行效率;本发明的系统、设备及介质用于实现上述基于GPU端加速的粒子群的优化方法;本发明提高了PSO算法的实际适用性,在复杂优化问题中具有效率上的绝对优势。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117112195A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Particle swarm optimization method, system and device based on GPU end acceleration and medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WU%20JIA&rft.date=2023-11-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117112195A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true