Hybrid wind power plant fault characteristic grouping method based on BP neural network
The invention discloses a hybrid wind power plant grouping method based on a BP neural network. The method comprises the following steps: firstly, defining factors influencing the short-circuit current difference change of different types of generator groups in a wind power plant, characterizing a c...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XU WENCHENG WANG CONGBO LIU SUMEI KONG XIANGZHE WANG ZEPENG YU YUE |
description | The invention discloses a hybrid wind power plant grouping method based on a BP neural network. The method comprises the following steps: firstly, defining factors influencing the short-circuit current difference change of different types of generator groups in a wind power plant, characterizing a control protection sequential switching mode of the doubly-fed and permanent magnet direct-driven wind generator group from a mathematical perspective, and providing a classification method considering the control protection sequential switching mode; performing normalization processing on the type identification S of n units in the hybrid wind power plant, the input wind speed v and the terminal voltage drop degree gamma of each unit during fault, and training the BP neural network; inputting the feature vectors of the parameters of each unit into the trained BP neural network, and dividing the units in the same mode into units in the same group according to the recognition result of the unit group mode in the wind |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117094209A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117094209A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117094209A3</originalsourceid><addsrcrecordid>eNqNyjEKwjAUANAsDqLe4XsAoVVBOtaidBIHwbH8Jr9tMCbhJyF4ezt4AKe3vKV4tp-etYKsrQLvMjF4gzbCgMlEkBMyykisQ9QSRnbJazvCm-LkFPQYSIGzcL6DpcRoZmJ2_FqLxYAm0ObnSmyvl0fT7si7joJHSfPsmltZnorquC-q-vDP-QJmrTnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Hybrid wind power plant fault characteristic grouping method based on BP neural network</title><source>esp@cenet</source><creator>XU WENCHENG ; WANG CONGBO ; LIU SUMEI ; KONG XIANGZHE ; WANG ZEPENG ; YU YUE</creator><creatorcontrib>XU WENCHENG ; WANG CONGBO ; LIU SUMEI ; KONG XIANGZHE ; WANG ZEPENG ; YU YUE</creatorcontrib><description>The invention discloses a hybrid wind power plant grouping method based on a BP neural network. The method comprises the following steps: firstly, defining factors influencing the short-circuit current difference change of different types of generator groups in a wind power plant, characterizing a control protection sequential switching mode of the doubly-fed and permanent magnet direct-driven wind generator group from a mathematical perspective, and providing a classification method considering the control protection sequential switching mode; performing normalization processing on the type identification S of n units in the hybrid wind power plant, the input wind speed v and the terminal voltage drop degree gamma of each unit during fault, and training the BP neural network; inputting the feature vectors of the parameters of each unit into the trained BP neural network, and dividing the units in the same mode into units in the same group according to the recognition result of the unit group mode in the wind</description><language>chi ; eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231121&DB=EPODOC&CC=CN&NR=117094209A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231121&DB=EPODOC&CC=CN&NR=117094209A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU WENCHENG</creatorcontrib><creatorcontrib>WANG CONGBO</creatorcontrib><creatorcontrib>LIU SUMEI</creatorcontrib><creatorcontrib>KONG XIANGZHE</creatorcontrib><creatorcontrib>WANG ZEPENG</creatorcontrib><creatorcontrib>YU YUE</creatorcontrib><title>Hybrid wind power plant fault characteristic grouping method based on BP neural network</title><description>The invention discloses a hybrid wind power plant grouping method based on a BP neural network. The method comprises the following steps: firstly, defining factors influencing the short-circuit current difference change of different types of generator groups in a wind power plant, characterizing a control protection sequential switching mode of the doubly-fed and permanent magnet direct-driven wind generator group from a mathematical perspective, and providing a classification method considering the control protection sequential switching mode; performing normalization processing on the type identification S of n units in the hybrid wind power plant, the input wind speed v and the terminal voltage drop degree gamma of each unit during fault, and training the BP neural network; inputting the feature vectors of the parameters of each unit into the trained BP neural network, and dividing the units in the same mode into units in the same group according to the recognition result of the unit group mode in the wind</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwjAUANAsDqLe4XsAoVVBOtaidBIHwbH8Jr9tMCbhJyF4ezt4AKe3vKV4tp-etYKsrQLvMjF4gzbCgMlEkBMyykisQ9QSRnbJazvCm-LkFPQYSIGzcL6DpcRoZmJ2_FqLxYAm0ObnSmyvl0fT7si7joJHSfPsmltZnorquC-q-vDP-QJmrTnw</recordid><startdate>20231121</startdate><enddate>20231121</enddate><creator>XU WENCHENG</creator><creator>WANG CONGBO</creator><creator>LIU SUMEI</creator><creator>KONG XIANGZHE</creator><creator>WANG ZEPENG</creator><creator>YU YUE</creator><scope>EVB</scope></search><sort><creationdate>20231121</creationdate><title>Hybrid wind power plant fault characteristic grouping method based on BP neural network</title><author>XU WENCHENG ; WANG CONGBO ; LIU SUMEI ; KONG XIANGZHE ; WANG ZEPENG ; YU YUE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117094209A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><toplevel>online_resources</toplevel><creatorcontrib>XU WENCHENG</creatorcontrib><creatorcontrib>WANG CONGBO</creatorcontrib><creatorcontrib>LIU SUMEI</creatorcontrib><creatorcontrib>KONG XIANGZHE</creatorcontrib><creatorcontrib>WANG ZEPENG</creatorcontrib><creatorcontrib>YU YUE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU WENCHENG</au><au>WANG CONGBO</au><au>LIU SUMEI</au><au>KONG XIANGZHE</au><au>WANG ZEPENG</au><au>YU YUE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Hybrid wind power plant fault characteristic grouping method based on BP neural network</title><date>2023-11-21</date><risdate>2023</risdate><abstract>The invention discloses a hybrid wind power plant grouping method based on a BP neural network. The method comprises the following steps: firstly, defining factors influencing the short-circuit current difference change of different types of generator groups in a wind power plant, characterizing a control protection sequential switching mode of the doubly-fed and permanent magnet direct-driven wind generator group from a mathematical perspective, and providing a classification method considering the control protection sequential switching mode; performing normalization processing on the type identification S of n units in the hybrid wind power plant, the input wind speed v and the terminal voltage drop degree gamma of each unit during fault, and training the BP neural network; inputting the feature vectors of the parameters of each unit into the trained BP neural network, and dividing the units in the same mode into units in the same group according to the recognition result of the unit group mode in the wind</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117094209A |
source | esp@cenet |
subjects | CALCULATING CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONVERSION OR DISTRIBUTION OF ELECTRIC POWER COUNTING ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY GENERATION PHYSICS SYSTEMS FOR STORING ELECTRIC ENERGY |
title | Hybrid wind power plant fault characteristic grouping method based on BP neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20WENCHENG&rft.date=2023-11-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117094209A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |