Hybrid wind power plant fault characteristic grouping method based on BP neural network

The invention discloses a hybrid wind power plant grouping method based on a BP neural network. The method comprises the following steps: firstly, defining factors influencing the short-circuit current difference change of different types of generator groups in a wind power plant, characterizing a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XU WENCHENG, WANG CONGBO, LIU SUMEI, KONG XIANGZHE, WANG ZEPENG, YU YUE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XU WENCHENG
WANG CONGBO
LIU SUMEI
KONG XIANGZHE
WANG ZEPENG
YU YUE
description The invention discloses a hybrid wind power plant grouping method based on a BP neural network. The method comprises the following steps: firstly, defining factors influencing the short-circuit current difference change of different types of generator groups in a wind power plant, characterizing a control protection sequential switching mode of the doubly-fed and permanent magnet direct-driven wind generator group from a mathematical perspective, and providing a classification method considering the control protection sequential switching mode; performing normalization processing on the type identification S of n units in the hybrid wind power plant, the input wind speed v and the terminal voltage drop degree gamma of each unit during fault, and training the BP neural network; inputting the feature vectors of the parameters of each unit into the trained BP neural network, and dividing the units in the same mode into units in the same group according to the recognition result of the unit group mode in the wind
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117094209A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117094209A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117094209A3</originalsourceid><addsrcrecordid>eNqNyjEKwjAUANAsDqLe4XsAoVVBOtaidBIHwbH8Jr9tMCbhJyF4ezt4AKe3vKV4tp-etYKsrQLvMjF4gzbCgMlEkBMyykisQ9QSRnbJazvCm-LkFPQYSIGzcL6DpcRoZmJ2_FqLxYAm0ObnSmyvl0fT7si7joJHSfPsmltZnorquC-q-vDP-QJmrTnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Hybrid wind power plant fault characteristic grouping method based on BP neural network</title><source>esp@cenet</source><creator>XU WENCHENG ; WANG CONGBO ; LIU SUMEI ; KONG XIANGZHE ; WANG ZEPENG ; YU YUE</creator><creatorcontrib>XU WENCHENG ; WANG CONGBO ; LIU SUMEI ; KONG XIANGZHE ; WANG ZEPENG ; YU YUE</creatorcontrib><description>The invention discloses a hybrid wind power plant grouping method based on a BP neural network. The method comprises the following steps: firstly, defining factors influencing the short-circuit current difference change of different types of generator groups in a wind power plant, characterizing a control protection sequential switching mode of the doubly-fed and permanent magnet direct-driven wind generator group from a mathematical perspective, and providing a classification method considering the control protection sequential switching mode; performing normalization processing on the type identification S of n units in the hybrid wind power plant, the input wind speed v and the terminal voltage drop degree gamma of each unit during fault, and training the BP neural network; inputting the feature vectors of the parameters of each unit into the trained BP neural network, and dividing the units in the same mode into units in the same group according to the recognition result of the unit group mode in the wind</description><language>chi ; eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231121&amp;DB=EPODOC&amp;CC=CN&amp;NR=117094209A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231121&amp;DB=EPODOC&amp;CC=CN&amp;NR=117094209A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU WENCHENG</creatorcontrib><creatorcontrib>WANG CONGBO</creatorcontrib><creatorcontrib>LIU SUMEI</creatorcontrib><creatorcontrib>KONG XIANGZHE</creatorcontrib><creatorcontrib>WANG ZEPENG</creatorcontrib><creatorcontrib>YU YUE</creatorcontrib><title>Hybrid wind power plant fault characteristic grouping method based on BP neural network</title><description>The invention discloses a hybrid wind power plant grouping method based on a BP neural network. The method comprises the following steps: firstly, defining factors influencing the short-circuit current difference change of different types of generator groups in a wind power plant, characterizing a control protection sequential switching mode of the doubly-fed and permanent magnet direct-driven wind generator group from a mathematical perspective, and providing a classification method considering the control protection sequential switching mode; performing normalization processing on the type identification S of n units in the hybrid wind power plant, the input wind speed v and the terminal voltage drop degree gamma of each unit during fault, and training the BP neural network; inputting the feature vectors of the parameters of each unit into the trained BP neural network, and dividing the units in the same mode into units in the same group according to the recognition result of the unit group mode in the wind</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwjAUANAsDqLe4XsAoVVBOtaidBIHwbH8Jr9tMCbhJyF4ezt4AKe3vKV4tp-etYKsrQLvMjF4gzbCgMlEkBMyykisQ9QSRnbJazvCm-LkFPQYSIGzcL6DpcRoZmJ2_FqLxYAm0ObnSmyvl0fT7si7joJHSfPsmltZnorquC-q-vDP-QJmrTnw</recordid><startdate>20231121</startdate><enddate>20231121</enddate><creator>XU WENCHENG</creator><creator>WANG CONGBO</creator><creator>LIU SUMEI</creator><creator>KONG XIANGZHE</creator><creator>WANG ZEPENG</creator><creator>YU YUE</creator><scope>EVB</scope></search><sort><creationdate>20231121</creationdate><title>Hybrid wind power plant fault characteristic grouping method based on BP neural network</title><author>XU WENCHENG ; WANG CONGBO ; LIU SUMEI ; KONG XIANGZHE ; WANG ZEPENG ; YU YUE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117094209A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><toplevel>online_resources</toplevel><creatorcontrib>XU WENCHENG</creatorcontrib><creatorcontrib>WANG CONGBO</creatorcontrib><creatorcontrib>LIU SUMEI</creatorcontrib><creatorcontrib>KONG XIANGZHE</creatorcontrib><creatorcontrib>WANG ZEPENG</creatorcontrib><creatorcontrib>YU YUE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU WENCHENG</au><au>WANG CONGBO</au><au>LIU SUMEI</au><au>KONG XIANGZHE</au><au>WANG ZEPENG</au><au>YU YUE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Hybrid wind power plant fault characteristic grouping method based on BP neural network</title><date>2023-11-21</date><risdate>2023</risdate><abstract>The invention discloses a hybrid wind power plant grouping method based on a BP neural network. The method comprises the following steps: firstly, defining factors influencing the short-circuit current difference change of different types of generator groups in a wind power plant, characterizing a control protection sequential switching mode of the doubly-fed and permanent magnet direct-driven wind generator group from a mathematical perspective, and providing a classification method considering the control protection sequential switching mode; performing normalization processing on the type identification S of n units in the hybrid wind power plant, the input wind speed v and the terminal voltage drop degree gamma of each unit during fault, and training the BP neural network; inputting the feature vectors of the parameters of each unit into the trained BP neural network, and dividing the units in the same mode into units in the same group according to the recognition result of the unit group mode in the wind</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117094209A
source esp@cenet
subjects CALCULATING
CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
GENERATION
PHYSICS
SYSTEMS FOR STORING ELECTRIC ENERGY
title Hybrid wind power plant fault characteristic grouping method based on BP neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20WENCHENG&rft.date=2023-11-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117094209A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true