Fault diagnosis model training method, power grid fault diagnosis method and storage medium

The invention provides a fault diagnosis model training method, a power grid fault diagnosis method and a storage medium, and relates to the technical field of power grid fault diagnosis. The model training method comprises the following steps: inputting original data of various working conditions i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GAO MING, XUAN YUHUA, MA WEIWEI, YANG JIEQIONG, ZHAO JIAN, WANG JIANJUN, DING QIAOJING, YU JIAN, GENG FEI, LIU YANG, GUAN TAIRAN, ZHAO YANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GAO MING
XUAN YUHUA
MA WEIWEI
YANG JIEQIONG
ZHAO JIAN
WANG JIANJUN
DING QIAOJING
YU JIAN
GENG FEI
LIU YANG
GUAN TAIRAN
ZHAO YANG
description The invention provides a fault diagnosis model training method, a power grid fault diagnosis method and a storage medium, and relates to the technical field of power grid fault diagnosis. The model training method comprises the following steps: inputting original data of various working conditions into a preprocessing layer to obtain a standard data set; inputting the standard data set into an input layer to obtain fused feature data; the fusion features sequentially pass through a convolution layer, a batch normalization layer and a pooling layer to obtain output data; inputting the output data into the input layer again, and obtaining the convolution data and the component vector of the output data under the current cycle; inputting the component vector into an output layer for iteration to obtain a diagnosis result, and when the component vector reaches a preset maximum number of iterations and the accuracy of the diagnosis result is greater than or equal to a preset accurate threshold, determining convolu
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117077736A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117077736A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117077736A3</originalsourceid><addsrcrecordid>eNqNi7EKwjAQQLM4iPoP565gKZi5FIuTk5tDObxrPEhyIUnx9xVxcnJ68HhvaW4Dzr4CCbqoRQoEJfZQM0qU6CBwfSjtIOmTM7gsBNPv8UkAI0GpmtHxW5HMYW0WE_rCmy9XZjucrv15z0lHLgnvHLmO_aVp7MFa2x679p_mBW9fO4E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Fault diagnosis model training method, power grid fault diagnosis method and storage medium</title><source>esp@cenet</source><creator>GAO MING ; XUAN YUHUA ; MA WEIWEI ; YANG JIEQIONG ; ZHAO JIAN ; WANG JIANJUN ; DING QIAOJING ; YU JIAN ; GENG FEI ; LIU YANG ; GUAN TAIRAN ; ZHAO YANG</creator><creatorcontrib>GAO MING ; XUAN YUHUA ; MA WEIWEI ; YANG JIEQIONG ; ZHAO JIAN ; WANG JIANJUN ; DING QIAOJING ; YU JIAN ; GENG FEI ; LIU YANG ; GUAN TAIRAN ; ZHAO YANG</creatorcontrib><description>The invention provides a fault diagnosis model training method, a power grid fault diagnosis method and a storage medium, and relates to the technical field of power grid fault diagnosis. The model training method comprises the following steps: inputting original data of various working conditions into a preprocessing layer to obtain a standard data set; inputting the standard data set into an input layer to obtain fused feature data; the fusion features sequentially pass through a convolution layer, a batch normalization layer and a pooling layer to obtain output data; inputting the output data into the input layer again, and obtaining the convolution data and the component vector of the output data under the current cycle; inputting the component vector into an output layer for iteration to obtain a diagnosis result, and when the component vector reaches a preset maximum number of iterations and the accuracy of the diagnosis result is greater than or equal to a preset accurate threshold, determining convolu</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231117&amp;DB=EPODOC&amp;CC=CN&amp;NR=117077736A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231117&amp;DB=EPODOC&amp;CC=CN&amp;NR=117077736A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GAO MING</creatorcontrib><creatorcontrib>XUAN YUHUA</creatorcontrib><creatorcontrib>MA WEIWEI</creatorcontrib><creatorcontrib>YANG JIEQIONG</creatorcontrib><creatorcontrib>ZHAO JIAN</creatorcontrib><creatorcontrib>WANG JIANJUN</creatorcontrib><creatorcontrib>DING QIAOJING</creatorcontrib><creatorcontrib>YU JIAN</creatorcontrib><creatorcontrib>GENG FEI</creatorcontrib><creatorcontrib>LIU YANG</creatorcontrib><creatorcontrib>GUAN TAIRAN</creatorcontrib><creatorcontrib>ZHAO YANG</creatorcontrib><title>Fault diagnosis model training method, power grid fault diagnosis method and storage medium</title><description>The invention provides a fault diagnosis model training method, a power grid fault diagnosis method and a storage medium, and relates to the technical field of power grid fault diagnosis. The model training method comprises the following steps: inputting original data of various working conditions into a preprocessing layer to obtain a standard data set; inputting the standard data set into an input layer to obtain fused feature data; the fusion features sequentially pass through a convolution layer, a batch normalization layer and a pooling layer to obtain output data; inputting the output data into the input layer again, and obtaining the convolution data and the component vector of the output data under the current cycle; inputting the component vector into an output layer for iteration to obtain a diagnosis result, and when the component vector reaches a preset maximum number of iterations and the accuracy of the diagnosis result is greater than or equal to a preset accurate threshold, determining convolu</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EKwjAQQLM4iPoP565gKZi5FIuTk5tDObxrPEhyIUnx9xVxcnJ68HhvaW4Dzr4CCbqoRQoEJfZQM0qU6CBwfSjtIOmTM7gsBNPv8UkAI0GpmtHxW5HMYW0WE_rCmy9XZjucrv15z0lHLgnvHLmO_aVp7MFa2x679p_mBW9fO4E</recordid><startdate>20231117</startdate><enddate>20231117</enddate><creator>GAO MING</creator><creator>XUAN YUHUA</creator><creator>MA WEIWEI</creator><creator>YANG JIEQIONG</creator><creator>ZHAO JIAN</creator><creator>WANG JIANJUN</creator><creator>DING QIAOJING</creator><creator>YU JIAN</creator><creator>GENG FEI</creator><creator>LIU YANG</creator><creator>GUAN TAIRAN</creator><creator>ZHAO YANG</creator><scope>EVB</scope></search><sort><creationdate>20231117</creationdate><title>Fault diagnosis model training method, power grid fault diagnosis method and storage medium</title><author>GAO MING ; XUAN YUHUA ; MA WEIWEI ; YANG JIEQIONG ; ZHAO JIAN ; WANG JIANJUN ; DING QIAOJING ; YU JIAN ; GENG FEI ; LIU YANG ; GUAN TAIRAN ; ZHAO YANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117077736A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>GAO MING</creatorcontrib><creatorcontrib>XUAN YUHUA</creatorcontrib><creatorcontrib>MA WEIWEI</creatorcontrib><creatorcontrib>YANG JIEQIONG</creatorcontrib><creatorcontrib>ZHAO JIAN</creatorcontrib><creatorcontrib>WANG JIANJUN</creatorcontrib><creatorcontrib>DING QIAOJING</creatorcontrib><creatorcontrib>YU JIAN</creatorcontrib><creatorcontrib>GENG FEI</creatorcontrib><creatorcontrib>LIU YANG</creatorcontrib><creatorcontrib>GUAN TAIRAN</creatorcontrib><creatorcontrib>ZHAO YANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GAO MING</au><au>XUAN YUHUA</au><au>MA WEIWEI</au><au>YANG JIEQIONG</au><au>ZHAO JIAN</au><au>WANG JIANJUN</au><au>DING QIAOJING</au><au>YU JIAN</au><au>GENG FEI</au><au>LIU YANG</au><au>GUAN TAIRAN</au><au>ZHAO YANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Fault diagnosis model training method, power grid fault diagnosis method and storage medium</title><date>2023-11-17</date><risdate>2023</risdate><abstract>The invention provides a fault diagnosis model training method, a power grid fault diagnosis method and a storage medium, and relates to the technical field of power grid fault diagnosis. The model training method comprises the following steps: inputting original data of various working conditions into a preprocessing layer to obtain a standard data set; inputting the standard data set into an input layer to obtain fused feature data; the fusion features sequentially pass through a convolution layer, a batch normalization layer and a pooling layer to obtain output data; inputting the output data into the input layer again, and obtaining the convolution data and the component vector of the output data under the current cycle; inputting the component vector into an output layer for iteration to obtain a diagnosis result, and when the component vector reaches a preset maximum number of iterations and the accuracy of the diagnosis result is greater than or equal to a preset accurate threshold, determining convolu</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117077736A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Fault diagnosis model training method, power grid fault diagnosis method and storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GAO%20MING&rft.date=2023-11-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117077736A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true