Web text public emotion mining method and system based on supervised learning

The invention discloses a web text public emotion mining method and system based on supervised learning, and the method comprises the steps: building a coding framework of web text multi-dimensional public emotions according to broadcast study literatures, expert opinions and experiences; coding tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHOU MINGJIE, MU WEIQI, ZHOU YIXIN, WANG YIHUAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHOU MINGJIE
MU WEIQI
ZHOU YIXIN
WANG YIHUAN
description The invention discloses a web text public emotion mining method and system based on supervised learning, and the method comprises the steps: building a coding framework of web text multi-dimensional public emotions according to broadcast study literatures, expert opinions and experiences; coding training is carried out on each bit of coding person, so that each bit of coding person is consistent; the web text is captured, and each coder performs scoring processing according to the given coding framework; extracting text features for expressing topics and contents in the web text by adopting an LIWC dictionary, and constructing a text data set; a supervised machine learning method is adopted, network text scoring and a text data set are combined for training, and a text analysis model is obtained through matrix parameter adjustment and cross validation methods; and obtaining evaluation subject attributes and multi-dimensional public emotion scores in the new web text by using the text analysis model. According
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117076656A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117076656A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117076656A3</originalsourceid><addsrcrecordid>eNrjZPANT01SKEmtKFEoKE3KyUxWSM3NL8nMz1PIzczLzEtXyE0tychPUUjMS1EoriwuSc1VSEosTk1RAKooLi1ILSrLBPFyUhOLQMp5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hobmBuZmZqZmjMTFqANtMNlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Web text public emotion mining method and system based on supervised learning</title><source>esp@cenet</source><creator>ZHOU MINGJIE ; MU WEIQI ; ZHOU YIXIN ; WANG YIHUAN</creator><creatorcontrib>ZHOU MINGJIE ; MU WEIQI ; ZHOU YIXIN ; WANG YIHUAN</creatorcontrib><description>The invention discloses a web text public emotion mining method and system based on supervised learning, and the method comprises the steps: building a coding framework of web text multi-dimensional public emotions according to broadcast study literatures, expert opinions and experiences; coding training is carried out on each bit of coding person, so that each bit of coding person is consistent; the web text is captured, and each coder performs scoring processing according to the given coding framework; extracting text features for expressing topics and contents in the web text by adopting an LIWC dictionary, and constructing a text data set; a supervised machine learning method is adopted, network text scoring and a text data set are combined for training, and a text analysis model is obtained through matrix parameter adjustment and cross validation methods; and obtaining evaluation subject attributes and multi-dimensional public emotion scores in the new web text by using the text analysis model. According</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231117&amp;DB=EPODOC&amp;CC=CN&amp;NR=117076656A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231117&amp;DB=EPODOC&amp;CC=CN&amp;NR=117076656A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHOU MINGJIE</creatorcontrib><creatorcontrib>MU WEIQI</creatorcontrib><creatorcontrib>ZHOU YIXIN</creatorcontrib><creatorcontrib>WANG YIHUAN</creatorcontrib><title>Web text public emotion mining method and system based on supervised learning</title><description>The invention discloses a web text public emotion mining method and system based on supervised learning, and the method comprises the steps: building a coding framework of web text multi-dimensional public emotions according to broadcast study literatures, expert opinions and experiences; coding training is carried out on each bit of coding person, so that each bit of coding person is consistent; the web text is captured, and each coder performs scoring processing according to the given coding framework; extracting text features for expressing topics and contents in the web text by adopting an LIWC dictionary, and constructing a text data set; a supervised machine learning method is adopted, network text scoring and a text data set are combined for training, and a text analysis model is obtained through matrix parameter adjustment and cross validation methods; and obtaining evaluation subject attributes and multi-dimensional public emotion scores in the new web text by using the text analysis model. According</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPANT01SKEmtKFEoKE3KyUxWSM3NL8nMz1PIzczLzEtXyE0tychPUUjMS1EoriwuSc1VSEosTk1RAKooLi1ILSrLBPFyUhOLQMp5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hobmBuZmZqZmjMTFqANtMNlA</recordid><startdate>20231117</startdate><enddate>20231117</enddate><creator>ZHOU MINGJIE</creator><creator>MU WEIQI</creator><creator>ZHOU YIXIN</creator><creator>WANG YIHUAN</creator><scope>EVB</scope></search><sort><creationdate>20231117</creationdate><title>Web text public emotion mining method and system based on supervised learning</title><author>ZHOU MINGJIE ; MU WEIQI ; ZHOU YIXIN ; WANG YIHUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117076656A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHOU MINGJIE</creatorcontrib><creatorcontrib>MU WEIQI</creatorcontrib><creatorcontrib>ZHOU YIXIN</creatorcontrib><creatorcontrib>WANG YIHUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHOU MINGJIE</au><au>MU WEIQI</au><au>ZHOU YIXIN</au><au>WANG YIHUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Web text public emotion mining method and system based on supervised learning</title><date>2023-11-17</date><risdate>2023</risdate><abstract>The invention discloses a web text public emotion mining method and system based on supervised learning, and the method comprises the steps: building a coding framework of web text multi-dimensional public emotions according to broadcast study literatures, expert opinions and experiences; coding training is carried out on each bit of coding person, so that each bit of coding person is consistent; the web text is captured, and each coder performs scoring processing according to the given coding framework; extracting text features for expressing topics and contents in the web text by adopting an LIWC dictionary, and constructing a text data set; a supervised machine learning method is adopted, network text scoring and a text data set are combined for training, and a text analysis model is obtained through matrix parameter adjustment and cross validation methods; and obtaining evaluation subject attributes and multi-dimensional public emotion scores in the new web text by using the text analysis model. According</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117076656A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Web text public emotion mining method and system based on supervised learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHOU%20MINGJIE&rft.date=2023-11-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117076656A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true