Gastrointestinal tract lesion type identification method and system

The invention provides a gastrointestinal tract lesion type identification method and system, and belongs to the technical field of image processing, and the method comprises the steps: obtaining a to-be-detected WCE image; the method comprises the following steps: acquiring a WCE image data set, ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHU ZHI, YE BO, ZHA WEI, WANG SHUFANG, FU YINGBING, ZHANG LETING, WANG BO, QI BOWEN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHU ZHI
YE BO
ZHA WEI
WANG SHUFANG
FU YINGBING
ZHANG LETING
WANG BO
QI BOWEN
description The invention provides a gastrointestinal tract lesion type identification method and system, and belongs to the technical field of image processing, and the method comprises the steps: obtaining a to-be-detected WCE image; the method comprises the following steps: acquiring a WCE image data set, calling a ResNet50 pre-training model, adding a training attention module in the ResNet50 pre-training model, and performing visualization by using a Grad-CAM model to obtain a gastrointestinal lesion classification model; and inputting a to-be-detected WCE image into the gastrointestinal lesion classification model, and outputting a gastrointestinal lesion type identification result. According to the method, a classification method based on ResNet50 and attention module combined transfer learning is adopted, so that the precision can be remarkably improved, and the method has extremely high precision and good robustness for different lesion tissues and gastrointestinal tract images in various environments. 本发明提供一种胃肠
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117058467A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117058467A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117058467A3</originalsourceid><addsrcrecordid>eNrjZHB2TywuKcrPzCtJLS7JzEvMUSgpSkwuUchJLc7Mz1MoqSxIVchMSc0ryUzLTE4sAYnlppZk5KcoJOalKBRXFpek5vIwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUknhnP0NDcwNTCxMzc0djYtQAAOrfM1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Gastrointestinal tract lesion type identification method and system</title><source>esp@cenet</source><creator>SHU ZHI ; YE BO ; ZHA WEI ; WANG SHUFANG ; FU YINGBING ; ZHANG LETING ; WANG BO ; QI BOWEN</creator><creatorcontrib>SHU ZHI ; YE BO ; ZHA WEI ; WANG SHUFANG ; FU YINGBING ; ZHANG LETING ; WANG BO ; QI BOWEN</creatorcontrib><description>The invention provides a gastrointestinal tract lesion type identification method and system, and belongs to the technical field of image processing, and the method comprises the steps: obtaining a to-be-detected WCE image; the method comprises the following steps: acquiring a WCE image data set, calling a ResNet50 pre-training model, adding a training attention module in the ResNet50 pre-training model, and performing visualization by using a Grad-CAM model to obtain a gastrointestinal lesion classification model; and inputting a to-be-detected WCE image into the gastrointestinal lesion classification model, and outputting a gastrointestinal lesion type identification result. According to the method, a classification method based on ResNet50 and attention module combined transfer learning is adopted, so that the precision can be remarkably improved, and the method has extremely high precision and good robustness for different lesion tissues and gastrointestinal tract images in various environments. 本发明提供一种胃肠</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231114&amp;DB=EPODOC&amp;CC=CN&amp;NR=117058467A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231114&amp;DB=EPODOC&amp;CC=CN&amp;NR=117058467A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHU ZHI</creatorcontrib><creatorcontrib>YE BO</creatorcontrib><creatorcontrib>ZHA WEI</creatorcontrib><creatorcontrib>WANG SHUFANG</creatorcontrib><creatorcontrib>FU YINGBING</creatorcontrib><creatorcontrib>ZHANG LETING</creatorcontrib><creatorcontrib>WANG BO</creatorcontrib><creatorcontrib>QI BOWEN</creatorcontrib><title>Gastrointestinal tract lesion type identification method and system</title><description>The invention provides a gastrointestinal tract lesion type identification method and system, and belongs to the technical field of image processing, and the method comprises the steps: obtaining a to-be-detected WCE image; the method comprises the following steps: acquiring a WCE image data set, calling a ResNet50 pre-training model, adding a training attention module in the ResNet50 pre-training model, and performing visualization by using a Grad-CAM model to obtain a gastrointestinal lesion classification model; and inputting a to-be-detected WCE image into the gastrointestinal lesion classification model, and outputting a gastrointestinal lesion type identification result. According to the method, a classification method based on ResNet50 and attention module combined transfer learning is adopted, so that the precision can be remarkably improved, and the method has extremely high precision and good robustness for different lesion tissues and gastrointestinal tract images in various environments. 本发明提供一种胃肠</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB2TywuKcrPzCtJLS7JzEvMUSgpSkwuUchJLc7Mz1MoqSxIVchMSc0ryUzLTE4sAYnlppZk5KcoJOalKBRXFpek5vIwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUknhnP0NDcwNTCxMzc0djYtQAAOrfM1A</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>SHU ZHI</creator><creator>YE BO</creator><creator>ZHA WEI</creator><creator>WANG SHUFANG</creator><creator>FU YINGBING</creator><creator>ZHANG LETING</creator><creator>WANG BO</creator><creator>QI BOWEN</creator><scope>EVB</scope></search><sort><creationdate>20231114</creationdate><title>Gastrointestinal tract lesion type identification method and system</title><author>SHU ZHI ; YE BO ; ZHA WEI ; WANG SHUFANG ; FU YINGBING ; ZHANG LETING ; WANG BO ; QI BOWEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117058467A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHU ZHI</creatorcontrib><creatorcontrib>YE BO</creatorcontrib><creatorcontrib>ZHA WEI</creatorcontrib><creatorcontrib>WANG SHUFANG</creatorcontrib><creatorcontrib>FU YINGBING</creatorcontrib><creatorcontrib>ZHANG LETING</creatorcontrib><creatorcontrib>WANG BO</creatorcontrib><creatorcontrib>QI BOWEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHU ZHI</au><au>YE BO</au><au>ZHA WEI</au><au>WANG SHUFANG</au><au>FU YINGBING</au><au>ZHANG LETING</au><au>WANG BO</au><au>QI BOWEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Gastrointestinal tract lesion type identification method and system</title><date>2023-11-14</date><risdate>2023</risdate><abstract>The invention provides a gastrointestinal tract lesion type identification method and system, and belongs to the technical field of image processing, and the method comprises the steps: obtaining a to-be-detected WCE image; the method comprises the following steps: acquiring a WCE image data set, calling a ResNet50 pre-training model, adding a training attention module in the ResNet50 pre-training model, and performing visualization by using a Grad-CAM model to obtain a gastrointestinal lesion classification model; and inputting a to-be-detected WCE image into the gastrointestinal lesion classification model, and outputting a gastrointestinal lesion type identification result. According to the method, a classification method based on ResNet50 and attention module combined transfer learning is adopted, so that the precision can be remarkably improved, and the method has extremely high precision and good robustness for different lesion tissues and gastrointestinal tract images in various environments. 本发明提供一种胃肠</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117058467A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Gastrointestinal tract lesion type identification method and system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHU%20ZHI&rft.date=2023-11-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117058467A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true