Target detection method under low illumination based on pyramid enhanced network
The invention relates to the technical field of visual perception, and discloses a pyramid enhancement network-based low-illumination target detection method, which constructs a pyramid enhancement network, enhances an image and captures potential information in the image. The pyramid enhancement ne...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YU ZHENDA KANG YU ZHAO YUNBO YIN XIANGCHEN LI ZERUI |
description | The invention relates to the technical field of visual perception, and discloses a pyramid enhancement network-based low-illumination target detection method, which constructs a pyramid enhancement network, enhances an image and captures potential information in the image. The pyramid enhancement network firstly decomposes an image into a plurality of components with different resolutions through a Laplacian pyramid, and in the component of each scale, a detail processing module and a low-frequency enhancement filter are constructed to enhance the component. The detail processing module is composed of a context branch and an edge branch, the context branch carries out global enhancement on components by capturing long-range dependence, and the edge branch carries out texture enhancement on the components. The low-frequency enhancement filter obtains low-frequency semantic information and blocks high-frequency noise through a dynamic low-pass filter so as to enrich feature information. The pyramid enhancement |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117058019A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117058019A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117058019A3</originalsourceid><addsrcrecordid>eNrjZAgISSxKTy1RSEktSU0uyczPU8hNLcnIT1EozUtJLVLIyS9XyMzJKc3NzEsEyyYlFqemKAAZBZVFibmZKQqpeRmJeclAsbzUkvL8omweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnApUGe_sZ2hobmBqYWBo6WhMjBoAyUw3tQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Target detection method under low illumination based on pyramid enhanced network</title><source>esp@cenet</source><creator>YU ZHENDA ; KANG YU ; ZHAO YUNBO ; YIN XIANGCHEN ; LI ZERUI</creator><creatorcontrib>YU ZHENDA ; KANG YU ; ZHAO YUNBO ; YIN XIANGCHEN ; LI ZERUI</creatorcontrib><description>The invention relates to the technical field of visual perception, and discloses a pyramid enhancement network-based low-illumination target detection method, which constructs a pyramid enhancement network, enhances an image and captures potential information in the image. The pyramid enhancement network firstly decomposes an image into a plurality of components with different resolutions through a Laplacian pyramid, and in the component of each scale, a detail processing module and a low-frequency enhancement filter are constructed to enhance the component. The detail processing module is composed of a context branch and an edge branch, the context branch carries out global enhancement on components by capturing long-range dependence, and the edge branch carries out texture enhancement on the components. The low-frequency enhancement filter obtains low-frequency semantic information and blocks high-frequency noise through a dynamic low-pass filter so as to enrich feature information. The pyramid enhancement</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231114&DB=EPODOC&CC=CN&NR=117058019A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231114&DB=EPODOC&CC=CN&NR=117058019A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YU ZHENDA</creatorcontrib><creatorcontrib>KANG YU</creatorcontrib><creatorcontrib>ZHAO YUNBO</creatorcontrib><creatorcontrib>YIN XIANGCHEN</creatorcontrib><creatorcontrib>LI ZERUI</creatorcontrib><title>Target detection method under low illumination based on pyramid enhanced network</title><description>The invention relates to the technical field of visual perception, and discloses a pyramid enhancement network-based low-illumination target detection method, which constructs a pyramid enhancement network, enhances an image and captures potential information in the image. The pyramid enhancement network firstly decomposes an image into a plurality of components with different resolutions through a Laplacian pyramid, and in the component of each scale, a detail processing module and a low-frequency enhancement filter are constructed to enhance the component. The detail processing module is composed of a context branch and an edge branch, the context branch carries out global enhancement on components by capturing long-range dependence, and the edge branch carries out texture enhancement on the components. The low-frequency enhancement filter obtains low-frequency semantic information and blocks high-frequency noise through a dynamic low-pass filter so as to enrich feature information. The pyramid enhancement</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAgISSxKTy1RSEktSU0uyczPU8hNLcnIT1EozUtJLVLIyS9XyMzJKc3NzEsEyyYlFqemKAAZBZVFibmZKQqpeRmJeclAsbzUkvL8omweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnApUGe_sZ2hobmBqYWBo6WhMjBoAyUw3tQ</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>YU ZHENDA</creator><creator>KANG YU</creator><creator>ZHAO YUNBO</creator><creator>YIN XIANGCHEN</creator><creator>LI ZERUI</creator><scope>EVB</scope></search><sort><creationdate>20231114</creationdate><title>Target detection method under low illumination based on pyramid enhanced network</title><author>YU ZHENDA ; KANG YU ; ZHAO YUNBO ; YIN XIANGCHEN ; LI ZERUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117058019A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YU ZHENDA</creatorcontrib><creatorcontrib>KANG YU</creatorcontrib><creatorcontrib>ZHAO YUNBO</creatorcontrib><creatorcontrib>YIN XIANGCHEN</creatorcontrib><creatorcontrib>LI ZERUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YU ZHENDA</au><au>KANG YU</au><au>ZHAO YUNBO</au><au>YIN XIANGCHEN</au><au>LI ZERUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Target detection method under low illumination based on pyramid enhanced network</title><date>2023-11-14</date><risdate>2023</risdate><abstract>The invention relates to the technical field of visual perception, and discloses a pyramid enhancement network-based low-illumination target detection method, which constructs a pyramid enhancement network, enhances an image and captures potential information in the image. The pyramid enhancement network firstly decomposes an image into a plurality of components with different resolutions through a Laplacian pyramid, and in the component of each scale, a detail processing module and a low-frequency enhancement filter are constructed to enhance the component. The detail processing module is composed of a context branch and an edge branch, the context branch carries out global enhancement on components by capturing long-range dependence, and the edge branch carries out texture enhancement on the components. The low-frequency enhancement filter obtains low-frequency semantic information and blocks high-frequency noise through a dynamic low-pass filter so as to enrich feature information. The pyramid enhancement</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117058019A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Target detection method under low illumination based on pyramid enhanced network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YU%20ZHENDA&rft.date=2023-11-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117058019A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |