Target detection method under low illumination based on pyramid enhanced network

The invention relates to the technical field of visual perception, and discloses a pyramid enhancement network-based low-illumination target detection method, which constructs a pyramid enhancement network, enhances an image and captures potential information in the image. The pyramid enhancement ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YU ZHENDA, KANG YU, ZHAO YUNBO, YIN XIANGCHEN, LI ZERUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YU ZHENDA
KANG YU
ZHAO YUNBO
YIN XIANGCHEN
LI ZERUI
description The invention relates to the technical field of visual perception, and discloses a pyramid enhancement network-based low-illumination target detection method, which constructs a pyramid enhancement network, enhances an image and captures potential information in the image. The pyramid enhancement network firstly decomposes an image into a plurality of components with different resolutions through a Laplacian pyramid, and in the component of each scale, a detail processing module and a low-frequency enhancement filter are constructed to enhance the component. The detail processing module is composed of a context branch and an edge branch, the context branch carries out global enhancement on components by capturing long-range dependence, and the edge branch carries out texture enhancement on the components. The low-frequency enhancement filter obtains low-frequency semantic information and blocks high-frequency noise through a dynamic low-pass filter so as to enrich feature information. The pyramid enhancement
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117058019A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117058019A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117058019A3</originalsourceid><addsrcrecordid>eNrjZAgISSxKTy1RSEktSU0uyczPU8hNLcnIT1EozUtJLVLIyS9XyMzJKc3NzEsEyyYlFqemKAAZBZVFibmZKQqpeRmJeclAsbzUkvL8omweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnApUGe_sZ2hobmBqYWBo6WhMjBoAyUw3tQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Target detection method under low illumination based on pyramid enhanced network</title><source>esp@cenet</source><creator>YU ZHENDA ; KANG YU ; ZHAO YUNBO ; YIN XIANGCHEN ; LI ZERUI</creator><creatorcontrib>YU ZHENDA ; KANG YU ; ZHAO YUNBO ; YIN XIANGCHEN ; LI ZERUI</creatorcontrib><description>The invention relates to the technical field of visual perception, and discloses a pyramid enhancement network-based low-illumination target detection method, which constructs a pyramid enhancement network, enhances an image and captures potential information in the image. The pyramid enhancement network firstly decomposes an image into a plurality of components with different resolutions through a Laplacian pyramid, and in the component of each scale, a detail processing module and a low-frequency enhancement filter are constructed to enhance the component. The detail processing module is composed of a context branch and an edge branch, the context branch carries out global enhancement on components by capturing long-range dependence, and the edge branch carries out texture enhancement on the components. The low-frequency enhancement filter obtains low-frequency semantic information and blocks high-frequency noise through a dynamic low-pass filter so as to enrich feature information. The pyramid enhancement</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231114&amp;DB=EPODOC&amp;CC=CN&amp;NR=117058019A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231114&amp;DB=EPODOC&amp;CC=CN&amp;NR=117058019A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YU ZHENDA</creatorcontrib><creatorcontrib>KANG YU</creatorcontrib><creatorcontrib>ZHAO YUNBO</creatorcontrib><creatorcontrib>YIN XIANGCHEN</creatorcontrib><creatorcontrib>LI ZERUI</creatorcontrib><title>Target detection method under low illumination based on pyramid enhanced network</title><description>The invention relates to the technical field of visual perception, and discloses a pyramid enhancement network-based low-illumination target detection method, which constructs a pyramid enhancement network, enhances an image and captures potential information in the image. The pyramid enhancement network firstly decomposes an image into a plurality of components with different resolutions through a Laplacian pyramid, and in the component of each scale, a detail processing module and a low-frequency enhancement filter are constructed to enhance the component. The detail processing module is composed of a context branch and an edge branch, the context branch carries out global enhancement on components by capturing long-range dependence, and the edge branch carries out texture enhancement on the components. The low-frequency enhancement filter obtains low-frequency semantic information and blocks high-frequency noise through a dynamic low-pass filter so as to enrich feature information. The pyramid enhancement</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAgISSxKTy1RSEktSU0uyczPU8hNLcnIT1EozUtJLVLIyS9XyMzJKc3NzEsEyyYlFqemKAAZBZVFibmZKQqpeRmJeclAsbzUkvL8omweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnApUGe_sZ2hobmBqYWBo6WhMjBoAyUw3tQ</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>YU ZHENDA</creator><creator>KANG YU</creator><creator>ZHAO YUNBO</creator><creator>YIN XIANGCHEN</creator><creator>LI ZERUI</creator><scope>EVB</scope></search><sort><creationdate>20231114</creationdate><title>Target detection method under low illumination based on pyramid enhanced network</title><author>YU ZHENDA ; KANG YU ; ZHAO YUNBO ; YIN XIANGCHEN ; LI ZERUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117058019A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YU ZHENDA</creatorcontrib><creatorcontrib>KANG YU</creatorcontrib><creatorcontrib>ZHAO YUNBO</creatorcontrib><creatorcontrib>YIN XIANGCHEN</creatorcontrib><creatorcontrib>LI ZERUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YU ZHENDA</au><au>KANG YU</au><au>ZHAO YUNBO</au><au>YIN XIANGCHEN</au><au>LI ZERUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Target detection method under low illumination based on pyramid enhanced network</title><date>2023-11-14</date><risdate>2023</risdate><abstract>The invention relates to the technical field of visual perception, and discloses a pyramid enhancement network-based low-illumination target detection method, which constructs a pyramid enhancement network, enhances an image and captures potential information in the image. The pyramid enhancement network firstly decomposes an image into a plurality of components with different resolutions through a Laplacian pyramid, and in the component of each scale, a detail processing module and a low-frequency enhancement filter are constructed to enhance the component. The detail processing module is composed of a context branch and an edge branch, the context branch carries out global enhancement on components by capturing long-range dependence, and the edge branch carries out texture enhancement on the components. The low-frequency enhancement filter obtains low-frequency semantic information and blocks high-frequency noise through a dynamic low-pass filter so as to enrich feature information. The pyramid enhancement</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117058019A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Target detection method under low illumination based on pyramid enhanced network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YU%20ZHENDA&rft.date=2023-11-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117058019A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true