Intestinal polyp segmentation method and system fused with mixed attention mechanism, and medium
The invention discloses an intestinal polyp segmentation method and system fused with a mixed attention mechanism, and a medium, and the method comprises the following steps: carrying out the preprocessing of an intestinal polyp image based on an endoscope, including data enhancement, and region ext...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | QI RONGHUI LI MENG HAN JUNWEI XU CHENCHU HAN LONGFEI WANG YUAN SONG YUHONG ZHANG DINGWEN |
description | The invention discloses an intestinal polyp segmentation method and system fused with a mixed attention mechanism, and a medium, and the method comprises the following steps: carrying out the preprocessing of an intestinal polyp image based on an endoscope, including data enhancement, and region extraction of a segmentation target through an adaptive threshold value, and is used for enhancing the robustness of a segmentation model and mining more accurate boundary information of the target; a feature token pyramid module is constructed to improve the semantic information extraction capability of an intestinal polyp image, and meanwhile, semantic information with multi-scale perception can be obtained by constructing a feature token pyramid by adopting fewer modules; a global feature extraction module is constructed, a local-global training strategy is utilized to reduce the requirement of the segmentation model for the data sample size, and the segmentation performance is further improved; a feature injection |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117036714A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117036714A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117036714A3</originalsourceid><addsrcrecordid>eNqNyzEKwkAQheE0FqLeYewVDBFTS1C0sbKPQ3aSLOzMLswEze0N6gGs3l98b549rmKk5gUDpBjGBEodkxiajwJM1kcHKA50VCOGdlBy8PTWA_vXlGg28S9uehSvvPkcmJwfeJnNWgxKq98usvX5dK8uW0qxJk3YkJDV1S3Py11xKPP9sfjHvAEhtD3O</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intestinal polyp segmentation method and system fused with mixed attention mechanism, and medium</title><source>esp@cenet</source><creator>QI RONGHUI ; LI MENG ; HAN JUNWEI ; XU CHENCHU ; HAN LONGFEI ; WANG YUAN ; SONG YUHONG ; ZHANG DINGWEN</creator><creatorcontrib>QI RONGHUI ; LI MENG ; HAN JUNWEI ; XU CHENCHU ; HAN LONGFEI ; WANG YUAN ; SONG YUHONG ; ZHANG DINGWEN</creatorcontrib><description>The invention discloses an intestinal polyp segmentation method and system fused with a mixed attention mechanism, and a medium, and the method comprises the following steps: carrying out the preprocessing of an intestinal polyp image based on an endoscope, including data enhancement, and region extraction of a segmentation target through an adaptive threshold value, and is used for enhancing the robustness of a segmentation model and mining more accurate boundary information of the target; a feature token pyramid module is constructed to improve the semantic information extraction capability of an intestinal polyp image, and meanwhile, semantic information with multi-scale perception can be obtained by constructing a feature token pyramid by adopting fewer modules; a global feature extraction module is constructed, a local-global training strategy is utilized to reduce the requirement of the segmentation model for the data sample size, and the segmentation performance is further improved; a feature injection</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231110&DB=EPODOC&CC=CN&NR=117036714A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231110&DB=EPODOC&CC=CN&NR=117036714A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>QI RONGHUI</creatorcontrib><creatorcontrib>LI MENG</creatorcontrib><creatorcontrib>HAN JUNWEI</creatorcontrib><creatorcontrib>XU CHENCHU</creatorcontrib><creatorcontrib>HAN LONGFEI</creatorcontrib><creatorcontrib>WANG YUAN</creatorcontrib><creatorcontrib>SONG YUHONG</creatorcontrib><creatorcontrib>ZHANG DINGWEN</creatorcontrib><title>Intestinal polyp segmentation method and system fused with mixed attention mechanism, and medium</title><description>The invention discloses an intestinal polyp segmentation method and system fused with a mixed attention mechanism, and a medium, and the method comprises the following steps: carrying out the preprocessing of an intestinal polyp image based on an endoscope, including data enhancement, and region extraction of a segmentation target through an adaptive threshold value, and is used for enhancing the robustness of a segmentation model and mining more accurate boundary information of the target; a feature token pyramid module is constructed to improve the semantic information extraction capability of an intestinal polyp image, and meanwhile, semantic information with multi-scale perception can be obtained by constructing a feature token pyramid by adopting fewer modules; a global feature extraction module is constructed, a local-global training strategy is utilized to reduce the requirement of the segmentation model for the data sample size, and the segmentation performance is further improved; a feature injection</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEKwkAQheE0FqLeYewVDBFTS1C0sbKPQ3aSLOzMLswEze0N6gGs3l98b549rmKk5gUDpBjGBEodkxiajwJM1kcHKA50VCOGdlBy8PTWA_vXlGg28S9uehSvvPkcmJwfeJnNWgxKq98usvX5dK8uW0qxJk3YkJDV1S3Py11xKPP9sfjHvAEhtD3O</recordid><startdate>20231110</startdate><enddate>20231110</enddate><creator>QI RONGHUI</creator><creator>LI MENG</creator><creator>HAN JUNWEI</creator><creator>XU CHENCHU</creator><creator>HAN LONGFEI</creator><creator>WANG YUAN</creator><creator>SONG YUHONG</creator><creator>ZHANG DINGWEN</creator><scope>EVB</scope></search><sort><creationdate>20231110</creationdate><title>Intestinal polyp segmentation method and system fused with mixed attention mechanism, and medium</title><author>QI RONGHUI ; LI MENG ; HAN JUNWEI ; XU CHENCHU ; HAN LONGFEI ; WANG YUAN ; SONG YUHONG ; ZHANG DINGWEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117036714A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>QI RONGHUI</creatorcontrib><creatorcontrib>LI MENG</creatorcontrib><creatorcontrib>HAN JUNWEI</creatorcontrib><creatorcontrib>XU CHENCHU</creatorcontrib><creatorcontrib>HAN LONGFEI</creatorcontrib><creatorcontrib>WANG YUAN</creatorcontrib><creatorcontrib>SONG YUHONG</creatorcontrib><creatorcontrib>ZHANG DINGWEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>QI RONGHUI</au><au>LI MENG</au><au>HAN JUNWEI</au><au>XU CHENCHU</au><au>HAN LONGFEI</au><au>WANG YUAN</au><au>SONG YUHONG</au><au>ZHANG DINGWEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intestinal polyp segmentation method and system fused with mixed attention mechanism, and medium</title><date>2023-11-10</date><risdate>2023</risdate><abstract>The invention discloses an intestinal polyp segmentation method and system fused with a mixed attention mechanism, and a medium, and the method comprises the following steps: carrying out the preprocessing of an intestinal polyp image based on an endoscope, including data enhancement, and region extraction of a segmentation target through an adaptive threshold value, and is used for enhancing the robustness of a segmentation model and mining more accurate boundary information of the target; a feature token pyramid module is constructed to improve the semantic information extraction capability of an intestinal polyp image, and meanwhile, semantic information with multi-scale perception can be obtained by constructing a feature token pyramid by adopting fewer modules; a global feature extraction module is constructed, a local-global training strategy is utilized to reduce the requirement of the segmentation model for the data sample size, and the segmentation performance is further improved; a feature injection</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117036714A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Intestinal polyp segmentation method and system fused with mixed attention mechanism, and medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=QI%20RONGHUI&rft.date=2023-11-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117036714A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |