Intestinal polyp segmentation method and system fused with mixed attention mechanism, and medium

The invention discloses an intestinal polyp segmentation method and system fused with a mixed attention mechanism, and a medium, and the method comprises the following steps: carrying out the preprocessing of an intestinal polyp image based on an endoscope, including data enhancement, and region ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: QI RONGHUI, LI MENG, HAN JUNWEI, XU CHENCHU, HAN LONGFEI, WANG YUAN, SONG YUHONG, ZHANG DINGWEN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator QI RONGHUI
LI MENG
HAN JUNWEI
XU CHENCHU
HAN LONGFEI
WANG YUAN
SONG YUHONG
ZHANG DINGWEN
description The invention discloses an intestinal polyp segmentation method and system fused with a mixed attention mechanism, and a medium, and the method comprises the following steps: carrying out the preprocessing of an intestinal polyp image based on an endoscope, including data enhancement, and region extraction of a segmentation target through an adaptive threshold value, and is used for enhancing the robustness of a segmentation model and mining more accurate boundary information of the target; a feature token pyramid module is constructed to improve the semantic information extraction capability of an intestinal polyp image, and meanwhile, semantic information with multi-scale perception can be obtained by constructing a feature token pyramid by adopting fewer modules; a global feature extraction module is constructed, a local-global training strategy is utilized to reduce the requirement of the segmentation model for the data sample size, and the segmentation performance is further improved; a feature injection
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117036714A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117036714A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117036714A3</originalsourceid><addsrcrecordid>eNqNyzEKwkAQheE0FqLeYewVDBFTS1C0sbKPQ3aSLOzMLswEze0N6gGs3l98b549rmKk5gUDpBjGBEodkxiajwJM1kcHKA50VCOGdlBy8PTWA_vXlGg28S9uehSvvPkcmJwfeJnNWgxKq98usvX5dK8uW0qxJk3YkJDV1S3Py11xKPP9sfjHvAEhtD3O</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intestinal polyp segmentation method and system fused with mixed attention mechanism, and medium</title><source>esp@cenet</source><creator>QI RONGHUI ; LI MENG ; HAN JUNWEI ; XU CHENCHU ; HAN LONGFEI ; WANG YUAN ; SONG YUHONG ; ZHANG DINGWEN</creator><creatorcontrib>QI RONGHUI ; LI MENG ; HAN JUNWEI ; XU CHENCHU ; HAN LONGFEI ; WANG YUAN ; SONG YUHONG ; ZHANG DINGWEN</creatorcontrib><description>The invention discloses an intestinal polyp segmentation method and system fused with a mixed attention mechanism, and a medium, and the method comprises the following steps: carrying out the preprocessing of an intestinal polyp image based on an endoscope, including data enhancement, and region extraction of a segmentation target through an adaptive threshold value, and is used for enhancing the robustness of a segmentation model and mining more accurate boundary information of the target; a feature token pyramid module is constructed to improve the semantic information extraction capability of an intestinal polyp image, and meanwhile, semantic information with multi-scale perception can be obtained by constructing a feature token pyramid by adopting fewer modules; a global feature extraction module is constructed, a local-global training strategy is utilized to reduce the requirement of the segmentation model for the data sample size, and the segmentation performance is further improved; a feature injection</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231110&amp;DB=EPODOC&amp;CC=CN&amp;NR=117036714A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231110&amp;DB=EPODOC&amp;CC=CN&amp;NR=117036714A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>QI RONGHUI</creatorcontrib><creatorcontrib>LI MENG</creatorcontrib><creatorcontrib>HAN JUNWEI</creatorcontrib><creatorcontrib>XU CHENCHU</creatorcontrib><creatorcontrib>HAN LONGFEI</creatorcontrib><creatorcontrib>WANG YUAN</creatorcontrib><creatorcontrib>SONG YUHONG</creatorcontrib><creatorcontrib>ZHANG DINGWEN</creatorcontrib><title>Intestinal polyp segmentation method and system fused with mixed attention mechanism, and medium</title><description>The invention discloses an intestinal polyp segmentation method and system fused with a mixed attention mechanism, and a medium, and the method comprises the following steps: carrying out the preprocessing of an intestinal polyp image based on an endoscope, including data enhancement, and region extraction of a segmentation target through an adaptive threshold value, and is used for enhancing the robustness of a segmentation model and mining more accurate boundary information of the target; a feature token pyramid module is constructed to improve the semantic information extraction capability of an intestinal polyp image, and meanwhile, semantic information with multi-scale perception can be obtained by constructing a feature token pyramid by adopting fewer modules; a global feature extraction module is constructed, a local-global training strategy is utilized to reduce the requirement of the segmentation model for the data sample size, and the segmentation performance is further improved; a feature injection</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEKwkAQheE0FqLeYewVDBFTS1C0sbKPQ3aSLOzMLswEze0N6gGs3l98b549rmKk5gUDpBjGBEodkxiajwJM1kcHKA50VCOGdlBy8PTWA_vXlGg28S9uehSvvPkcmJwfeJnNWgxKq98usvX5dK8uW0qxJk3YkJDV1S3Py11xKPP9sfjHvAEhtD3O</recordid><startdate>20231110</startdate><enddate>20231110</enddate><creator>QI RONGHUI</creator><creator>LI MENG</creator><creator>HAN JUNWEI</creator><creator>XU CHENCHU</creator><creator>HAN LONGFEI</creator><creator>WANG YUAN</creator><creator>SONG YUHONG</creator><creator>ZHANG DINGWEN</creator><scope>EVB</scope></search><sort><creationdate>20231110</creationdate><title>Intestinal polyp segmentation method and system fused with mixed attention mechanism, and medium</title><author>QI RONGHUI ; LI MENG ; HAN JUNWEI ; XU CHENCHU ; HAN LONGFEI ; WANG YUAN ; SONG YUHONG ; ZHANG DINGWEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117036714A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>QI RONGHUI</creatorcontrib><creatorcontrib>LI MENG</creatorcontrib><creatorcontrib>HAN JUNWEI</creatorcontrib><creatorcontrib>XU CHENCHU</creatorcontrib><creatorcontrib>HAN LONGFEI</creatorcontrib><creatorcontrib>WANG YUAN</creatorcontrib><creatorcontrib>SONG YUHONG</creatorcontrib><creatorcontrib>ZHANG DINGWEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>QI RONGHUI</au><au>LI MENG</au><au>HAN JUNWEI</au><au>XU CHENCHU</au><au>HAN LONGFEI</au><au>WANG YUAN</au><au>SONG YUHONG</au><au>ZHANG DINGWEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intestinal polyp segmentation method and system fused with mixed attention mechanism, and medium</title><date>2023-11-10</date><risdate>2023</risdate><abstract>The invention discloses an intestinal polyp segmentation method and system fused with a mixed attention mechanism, and a medium, and the method comprises the following steps: carrying out the preprocessing of an intestinal polyp image based on an endoscope, including data enhancement, and region extraction of a segmentation target through an adaptive threshold value, and is used for enhancing the robustness of a segmentation model and mining more accurate boundary information of the target; a feature token pyramid module is constructed to improve the semantic information extraction capability of an intestinal polyp image, and meanwhile, semantic information with multi-scale perception can be obtained by constructing a feature token pyramid by adopting fewer modules; a global feature extraction module is constructed, a local-global training strategy is utilized to reduce the requirement of the segmentation model for the data sample size, and the segmentation performance is further improved; a feature injection</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117036714A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Intestinal polyp segmentation method and system fused with mixed attention mechanism, and medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=QI%20RONGHUI&rft.date=2023-11-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117036714A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true