Multi-algorithm framework compatible processing method and system based on machine vision

The invention discloses a multi-algorithm framework compatible processing method and system based on machine vision. The method comprises the following steps: acquiring a target algorithm framework; wherein the target algorithm framework comprises one or more of a caffe algorithm framework, an ONNX...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WU MAOQIAN, SHOU YAYUN, QIAN BO, LIU HAO, ZHANG GUANGCAI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WU MAOQIAN
SHOU YAYUN
QIAN BO
LIU HAO
ZHANG GUANGCAI
description The invention discloses a multi-algorithm framework compatible processing method and system based on machine vision. The method comprises the following steps: acquiring a target algorithm framework; wherein the target algorithm framework comprises one or more of a caffe algorithm framework, an ONNX algorithm framework, a DarkNet algorithm framework and a Pytorch algorithm framework; analyzing and quantifying the target algorithm framework to generate an instruction and a file required by an FPGA (Field Programmable Gate Array); instructions and files required by the FPGA are transmitted to the FPGA; and the FPGA calls a corresponding operator for operation according to the received instruction and file to obtain an operation result. According to the method, a multi-algorithm framework and multi-network model can be supported, and the problem of inflexible application caused by the fact that part of methods and systems only support single algorithm framework operation in the prior art is solved. 本发明公开了一种基于机器视觉
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117035027A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117035027A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117035027A3</originalsourceid><addsrcrecordid>eNqNyjEOwjAMAMAuDAj4g3lApZYKdUYViAUmFqbKTd3GIomjOID4PQsPYLrllsX98nSZS3SzJM7Ww5TQ01vSA4z4iJkHRxCTGFLlMIOnbGUEDCPoRzN5GFBpBAng0VgOBC9WlrAuFhM6pc3PVbE9HW_duaQoPWlEQ4Fy313ruq2afbVrD80_5wtGVjtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-algorithm framework compatible processing method and system based on machine vision</title><source>esp@cenet</source><creator>WU MAOQIAN ; SHOU YAYUN ; QIAN BO ; LIU HAO ; ZHANG GUANGCAI</creator><creatorcontrib>WU MAOQIAN ; SHOU YAYUN ; QIAN BO ; LIU HAO ; ZHANG GUANGCAI</creatorcontrib><description>The invention discloses a multi-algorithm framework compatible processing method and system based on machine vision. The method comprises the following steps: acquiring a target algorithm framework; wherein the target algorithm framework comprises one or more of a caffe algorithm framework, an ONNX algorithm framework, a DarkNet algorithm framework and a Pytorch algorithm framework; analyzing and quantifying the target algorithm framework to generate an instruction and a file required by an FPGA (Field Programmable Gate Array); instructions and files required by the FPGA are transmitted to the FPGA; and the FPGA calls a corresponding operator for operation according to the received instruction and file to obtain an operation result. According to the method, a multi-algorithm framework and multi-network model can be supported, and the problem of inflexible application caused by the fact that part of methods and systems only support single algorithm framework operation in the prior art is solved. 本发明公开了一种基于机器视觉</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231110&amp;DB=EPODOC&amp;CC=CN&amp;NR=117035027A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231110&amp;DB=EPODOC&amp;CC=CN&amp;NR=117035027A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WU MAOQIAN</creatorcontrib><creatorcontrib>SHOU YAYUN</creatorcontrib><creatorcontrib>QIAN BO</creatorcontrib><creatorcontrib>LIU HAO</creatorcontrib><creatorcontrib>ZHANG GUANGCAI</creatorcontrib><title>Multi-algorithm framework compatible processing method and system based on machine vision</title><description>The invention discloses a multi-algorithm framework compatible processing method and system based on machine vision. The method comprises the following steps: acquiring a target algorithm framework; wherein the target algorithm framework comprises one or more of a caffe algorithm framework, an ONNX algorithm framework, a DarkNet algorithm framework and a Pytorch algorithm framework; analyzing and quantifying the target algorithm framework to generate an instruction and a file required by an FPGA (Field Programmable Gate Array); instructions and files required by the FPGA are transmitted to the FPGA; and the FPGA calls a corresponding operator for operation according to the received instruction and file to obtain an operation result. According to the method, a multi-algorithm framework and multi-network model can be supported, and the problem of inflexible application caused by the fact that part of methods and systems only support single algorithm framework operation in the prior art is solved. 本发明公开了一种基于机器视觉</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMAMAuDAj4g3lApZYKdUYViAUmFqbKTd3GIomjOID4PQsPYLrllsX98nSZS3SzJM7Ww5TQ01vSA4z4iJkHRxCTGFLlMIOnbGUEDCPoRzN5GFBpBAng0VgOBC9WlrAuFhM6pc3PVbE9HW_duaQoPWlEQ4Fy313ruq2afbVrD80_5wtGVjtA</recordid><startdate>20231110</startdate><enddate>20231110</enddate><creator>WU MAOQIAN</creator><creator>SHOU YAYUN</creator><creator>QIAN BO</creator><creator>LIU HAO</creator><creator>ZHANG GUANGCAI</creator><scope>EVB</scope></search><sort><creationdate>20231110</creationdate><title>Multi-algorithm framework compatible processing method and system based on machine vision</title><author>WU MAOQIAN ; SHOU YAYUN ; QIAN BO ; LIU HAO ; ZHANG GUANGCAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117035027A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WU MAOQIAN</creatorcontrib><creatorcontrib>SHOU YAYUN</creatorcontrib><creatorcontrib>QIAN BO</creatorcontrib><creatorcontrib>LIU HAO</creatorcontrib><creatorcontrib>ZHANG GUANGCAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WU MAOQIAN</au><au>SHOU YAYUN</au><au>QIAN BO</au><au>LIU HAO</au><au>ZHANG GUANGCAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-algorithm framework compatible processing method and system based on machine vision</title><date>2023-11-10</date><risdate>2023</risdate><abstract>The invention discloses a multi-algorithm framework compatible processing method and system based on machine vision. The method comprises the following steps: acquiring a target algorithm framework; wherein the target algorithm framework comprises one or more of a caffe algorithm framework, an ONNX algorithm framework, a DarkNet algorithm framework and a Pytorch algorithm framework; analyzing and quantifying the target algorithm framework to generate an instruction and a file required by an FPGA (Field Programmable Gate Array); instructions and files required by the FPGA are transmitted to the FPGA; and the FPGA calls a corresponding operator for operation according to the received instruction and file to obtain an operation result. According to the method, a multi-algorithm framework and multi-network model can be supported, and the problem of inflexible application caused by the fact that part of methods and systems only support single algorithm framework operation in the prior art is solved. 本发明公开了一种基于机器视觉</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117035027A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Multi-algorithm framework compatible processing method and system based on machine vision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A30%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WU%20MAOQIAN&rft.date=2023-11-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117035027A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true