Automatic glass bottle detection system and method thereof

The invention relates to the field of intelligent detection, and particularly discloses an automatic glass bottle detection system and a method thereof.The artificial intelligence technology based on a deep neural network model is adopted to obtain a detection image of a finished glass bottle to be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FANG QINGHAI, ZHANG SHIMIN, WANG CHANGLEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FANG QINGHAI
ZHANG SHIMIN
WANG CHANGLEI
description The invention relates to the field of intelligent detection, and particularly discloses an automatic glass bottle detection system and a method thereof.The artificial intelligence technology based on a deep neural network model is adopted to obtain a detection image of a finished glass bottle to be detected, and a feature map is obtained through a convolutional neural network; and after the feature map is segmented, deep feature extraction is carried out through a hybrid convolution module and a three-dimensional convolution module, so that a classification result used for representing whether the quality of the finished glass bottle to be detected reaches the standard or not is obtained. Furthermore, the automatic detection process can be realized, and the production efficiency, the accuracy and the quality control level are improved. 本申请涉及智能检测领域,其具体地公开了一种自动化玻璃瓶检测系统及其方法,其采用基于深度神经网络模型的人工智能技术,获取待检测成品玻璃瓶的检测图像,通过卷积神经网络得到特征图,将特征图切分后再通过混合卷积和三维卷积模块进行深度特征提取,以得到用于表示待检测成品玻璃瓶质量是否达标的分类结果。进而,可以实现自动化的检测过程,提高生产效率、准确性和质量控制水
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117011274A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117011274A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117011274A3</originalsourceid><addsrcrecordid>eNrjZLByLC3Jz00syUxWSM9JLC5WSMovKclJVUhJLUlNLsnMz1MoriwuSc1VSMxLUchNLcnIT1EoyUgtSs1P42FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hobmBoaGRuYmjsbEqAEAmH8vQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatic glass bottle detection system and method thereof</title><source>esp@cenet</source><creator>FANG QINGHAI ; ZHANG SHIMIN ; WANG CHANGLEI</creator><creatorcontrib>FANG QINGHAI ; ZHANG SHIMIN ; WANG CHANGLEI</creatorcontrib><description>The invention relates to the field of intelligent detection, and particularly discloses an automatic glass bottle detection system and a method thereof.The artificial intelligence technology based on a deep neural network model is adopted to obtain a detection image of a finished glass bottle to be detected, and a feature map is obtained through a convolutional neural network; and after the feature map is segmented, deep feature extraction is carried out through a hybrid convolution module and a three-dimensional convolution module, so that a classification result used for representing whether the quality of the finished glass bottle to be detected reaches the standard or not is obtained. Furthermore, the automatic detection process can be realized, and the production efficiency, the accuracy and the quality control level are improved. 本申请涉及智能检测领域,其具体地公开了一种自动化玻璃瓶检测系统及其方法,其采用基于深度神经网络模型的人工智能技术,获取待检测成品玻璃瓶的检测图像,通过卷积神经网络得到特征图,将特征图切分后再通过混合卷积和三维卷积模块进行深度特征提取,以得到用于表示待检测成品玻璃瓶质量是否达标的分类结果。进而,可以实现自动化的检测过程,提高生产效率、准确性和质量控制水</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231107&amp;DB=EPODOC&amp;CC=CN&amp;NR=117011274A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231107&amp;DB=EPODOC&amp;CC=CN&amp;NR=117011274A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FANG QINGHAI</creatorcontrib><creatorcontrib>ZHANG SHIMIN</creatorcontrib><creatorcontrib>WANG CHANGLEI</creatorcontrib><title>Automatic glass bottle detection system and method thereof</title><description>The invention relates to the field of intelligent detection, and particularly discloses an automatic glass bottle detection system and a method thereof.The artificial intelligence technology based on a deep neural network model is adopted to obtain a detection image of a finished glass bottle to be detected, and a feature map is obtained through a convolutional neural network; and after the feature map is segmented, deep feature extraction is carried out through a hybrid convolution module and a three-dimensional convolution module, so that a classification result used for representing whether the quality of the finished glass bottle to be detected reaches the standard or not is obtained. Furthermore, the automatic detection process can be realized, and the production efficiency, the accuracy and the quality control level are improved. 本申请涉及智能检测领域,其具体地公开了一种自动化玻璃瓶检测系统及其方法,其采用基于深度神经网络模型的人工智能技术,获取待检测成品玻璃瓶的检测图像,通过卷积神经网络得到特征图,将特征图切分后再通过混合卷积和三维卷积模块进行深度特征提取,以得到用于表示待检测成品玻璃瓶质量是否达标的分类结果。进而,可以实现自动化的检测过程,提高生产效率、准确性和质量控制水</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLByLC3Jz00syUxWSM9JLC5WSMovKclJVUhJLUlNLsnMz1MoriwuSc1VSMxLUchNLcnIT1EoyUgtSs1P42FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hobmBoaGRuYmjsbEqAEAmH8vQQ</recordid><startdate>20231107</startdate><enddate>20231107</enddate><creator>FANG QINGHAI</creator><creator>ZHANG SHIMIN</creator><creator>WANG CHANGLEI</creator><scope>EVB</scope></search><sort><creationdate>20231107</creationdate><title>Automatic glass bottle detection system and method thereof</title><author>FANG QINGHAI ; ZHANG SHIMIN ; WANG CHANGLEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117011274A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>FANG QINGHAI</creatorcontrib><creatorcontrib>ZHANG SHIMIN</creatorcontrib><creatorcontrib>WANG CHANGLEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FANG QINGHAI</au><au>ZHANG SHIMIN</au><au>WANG CHANGLEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatic glass bottle detection system and method thereof</title><date>2023-11-07</date><risdate>2023</risdate><abstract>The invention relates to the field of intelligent detection, and particularly discloses an automatic glass bottle detection system and a method thereof.The artificial intelligence technology based on a deep neural network model is adopted to obtain a detection image of a finished glass bottle to be detected, and a feature map is obtained through a convolutional neural network; and after the feature map is segmented, deep feature extraction is carried out through a hybrid convolution module and a three-dimensional convolution module, so that a classification result used for representing whether the quality of the finished glass bottle to be detected reaches the standard or not is obtained. Furthermore, the automatic detection process can be realized, and the production efficiency, the accuracy and the quality control level are improved. 本申请涉及智能检测领域,其具体地公开了一种自动化玻璃瓶检测系统及其方法,其采用基于深度神经网络模型的人工智能技术,获取待检测成品玻璃瓶的检测图像,通过卷积神经网络得到特征图,将特征图切分后再通过混合卷积和三维卷积模块进行深度特征提取,以得到用于表示待检测成品玻璃瓶质量是否达标的分类结果。进而,可以实现自动化的检测过程,提高生产效率、准确性和质量控制水</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117011274A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Automatic glass bottle detection system and method thereof
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A06%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FANG%20QINGHAI&rft.date=2023-11-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117011274A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true