Enterprise real-time risk monitoring and early warning method based on AutoML
The invention provides an enterprise real-time risk monitoring and early warning method based on AutoML, and belongs to the field of machine learning and real-time risk monitoring, and the method comprises the steps: 1, building an enterprise risk database; 2, building an enterprise risk theme libra...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MI JUNDA YIN PANPAN XU HONGWEI CUI LELE |
description | The invention provides an enterprise real-time risk monitoring and early warning method based on AutoML, and belongs to the field of machine learning and real-time risk monitoring, and the method comprises the steps: 1, building an enterprise risk database; 2, building an enterprise risk theme library; 3, training an AutoML enterprise risk assessment model; 4, building a risk monitoring and early warning platform; and 5, real-time monitoring and early warning of enterprise risks are realized. And enterprise risk real-time monitoring and early warning are realized by adopting a big data framework according to platform user behavior data.
本发明提供一种基于AutoML的企业实时风险监测预警方法,属于机器学习及实时风险监控领域,本发明包括:1、企业风险数据库搭建;2、企业风险主题库搭建;3、训练AutoML企业风险评估模型;4、搭建风险监测预警平台;5、实现企业风险实时监测预警。采用大数据框架根据平台用户行为数据实现企业风险实时监测预警。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117010687A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117010687A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117010687A3</originalsourceid><addsrcrecordid>eNqNikEKwjAQAHPxIOof1gcUGgTrtZSKB-vJe1nNqsFkN2wi4u9V8AGeZhhmaoaeC2lSnwmUMFTFx4_5fIco7Iuo5ysgOyDU8IInKn9LpHITByfM5EAY2keRYT83kwuGTIsfZ2a57Y_drqIkI-WEZ2IqY3ewtqltvd407eqf5w3NxDXn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Enterprise real-time risk monitoring and early warning method based on AutoML</title><source>esp@cenet</source><creator>MI JUNDA ; YIN PANPAN ; XU HONGWEI ; CUI LELE</creator><creatorcontrib>MI JUNDA ; YIN PANPAN ; XU HONGWEI ; CUI LELE</creatorcontrib><description>The invention provides an enterprise real-time risk monitoring and early warning method based on AutoML, and belongs to the field of machine learning and real-time risk monitoring, and the method comprises the steps: 1, building an enterprise risk database; 2, building an enterprise risk theme library; 3, training an AutoML enterprise risk assessment model; 4, building a risk monitoring and early warning platform; and 5, real-time monitoring and early warning of enterprise risks are realized. And enterprise risk real-time monitoring and early warning are realized by adopting a big data framework according to platform user behavior data.
本发明提供一种基于AutoML的企业实时风险监测预警方法,属于机器学习及实时风险监控领域,本发明包括:1、企业风险数据库搭建;2、企业风险主题库搭建;3、训练AutoML企业风险评估模型;4、搭建风险监测预警平台;5、实现企业风险实时监测预警。采用大数据框架根据平台用户行为数据实现企业风险实时监测预警。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231107&DB=EPODOC&CC=CN&NR=117010687A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231107&DB=EPODOC&CC=CN&NR=117010687A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MI JUNDA</creatorcontrib><creatorcontrib>YIN PANPAN</creatorcontrib><creatorcontrib>XU HONGWEI</creatorcontrib><creatorcontrib>CUI LELE</creatorcontrib><title>Enterprise real-time risk monitoring and early warning method based on AutoML</title><description>The invention provides an enterprise real-time risk monitoring and early warning method based on AutoML, and belongs to the field of machine learning and real-time risk monitoring, and the method comprises the steps: 1, building an enterprise risk database; 2, building an enterprise risk theme library; 3, training an AutoML enterprise risk assessment model; 4, building a risk monitoring and early warning platform; and 5, real-time monitoring and early warning of enterprise risks are realized. And enterprise risk real-time monitoring and early warning are realized by adopting a big data framework according to platform user behavior data.
本发明提供一种基于AutoML的企业实时风险监测预警方法,属于机器学习及实时风险监控领域,本发明包括:1、企业风险数据库搭建;2、企业风险主题库搭建;3、训练AutoML企业风险评估模型;4、搭建风险监测预警平台;5、实现企业风险实时监测预警。采用大数据框架根据平台用户行为数据实现企业风险实时监测预警。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAQAHPxIOof1gcUGgTrtZSKB-vJe1nNqsFkN2wi4u9V8AGeZhhmaoaeC2lSnwmUMFTFx4_5fIco7Iuo5ysgOyDU8IInKn9LpHITByfM5EAY2keRYT83kwuGTIsfZ2a57Y_drqIkI-WEZ2IqY3ewtqltvd407eqf5w3NxDXn</recordid><startdate>20231107</startdate><enddate>20231107</enddate><creator>MI JUNDA</creator><creator>YIN PANPAN</creator><creator>XU HONGWEI</creator><creator>CUI LELE</creator><scope>EVB</scope></search><sort><creationdate>20231107</creationdate><title>Enterprise real-time risk monitoring and early warning method based on AutoML</title><author>MI JUNDA ; YIN PANPAN ; XU HONGWEI ; CUI LELE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117010687A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>MI JUNDA</creatorcontrib><creatorcontrib>YIN PANPAN</creatorcontrib><creatorcontrib>XU HONGWEI</creatorcontrib><creatorcontrib>CUI LELE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MI JUNDA</au><au>YIN PANPAN</au><au>XU HONGWEI</au><au>CUI LELE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Enterprise real-time risk monitoring and early warning method based on AutoML</title><date>2023-11-07</date><risdate>2023</risdate><abstract>The invention provides an enterprise real-time risk monitoring and early warning method based on AutoML, and belongs to the field of machine learning and real-time risk monitoring, and the method comprises the steps: 1, building an enterprise risk database; 2, building an enterprise risk theme library; 3, training an AutoML enterprise risk assessment model; 4, building a risk monitoring and early warning platform; and 5, real-time monitoring and early warning of enterprise risks are realized. And enterprise risk real-time monitoring and early warning are realized by adopting a big data framework according to platform user behavior data.
本发明提供一种基于AutoML的企业实时风险监测预警方法,属于机器学习及实时风险监控领域,本发明包括:1、企业风险数据库搭建;2、企业风险主题库搭建;3、训练AutoML企业风险评估模型;4、搭建风险监测预警平台;5、实现企业风险实时监测预警。采用大数据框架根据平台用户行为数据实现企业风险实时监测预警。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117010687A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Enterprise real-time risk monitoring and early warning method based on AutoML |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MI%20JUNDA&rft.date=2023-11-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117010687A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |