Enterprise real-time risk monitoring and early warning method based on AutoML

The invention provides an enterprise real-time risk monitoring and early warning method based on AutoML, and belongs to the field of machine learning and real-time risk monitoring, and the method comprises the steps: 1, building an enterprise risk database; 2, building an enterprise risk theme libra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MI JUNDA, YIN PANPAN, XU HONGWEI, CUI LELE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MI JUNDA
YIN PANPAN
XU HONGWEI
CUI LELE
description The invention provides an enterprise real-time risk monitoring and early warning method based on AutoML, and belongs to the field of machine learning and real-time risk monitoring, and the method comprises the steps: 1, building an enterprise risk database; 2, building an enterprise risk theme library; 3, training an AutoML enterprise risk assessment model; 4, building a risk monitoring and early warning platform; and 5, real-time monitoring and early warning of enterprise risks are realized. And enterprise risk real-time monitoring and early warning are realized by adopting a big data framework according to platform user behavior data. 本发明提供一种基于AutoML的企业实时风险监测预警方法,属于机器学习及实时风险监控领域,本发明包括:1、企业风险数据库搭建;2、企业风险主题库搭建;3、训练AutoML企业风险评估模型;4、搭建风险监测预警平台;5、实现企业风险实时监测预警。采用大数据框架根据平台用户行为数据实现企业风险实时监测预警。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117010687A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117010687A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117010687A3</originalsourceid><addsrcrecordid>eNqNikEKwjAQAHPxIOof1gcUGgTrtZSKB-vJe1nNqsFkN2wi4u9V8AGeZhhmaoaeC2lSnwmUMFTFx4_5fIco7Iuo5ysgOyDU8IInKn9LpHITByfM5EAY2keRYT83kwuGTIsfZ2a57Y_drqIkI-WEZ2IqY3ewtqltvd407eqf5w3NxDXn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Enterprise real-time risk monitoring and early warning method based on AutoML</title><source>esp@cenet</source><creator>MI JUNDA ; YIN PANPAN ; XU HONGWEI ; CUI LELE</creator><creatorcontrib>MI JUNDA ; YIN PANPAN ; XU HONGWEI ; CUI LELE</creatorcontrib><description>The invention provides an enterprise real-time risk monitoring and early warning method based on AutoML, and belongs to the field of machine learning and real-time risk monitoring, and the method comprises the steps: 1, building an enterprise risk database; 2, building an enterprise risk theme library; 3, training an AutoML enterprise risk assessment model; 4, building a risk monitoring and early warning platform; and 5, real-time monitoring and early warning of enterprise risks are realized. And enterprise risk real-time monitoring and early warning are realized by adopting a big data framework according to platform user behavior data. 本发明提供一种基于AutoML的企业实时风险监测预警方法,属于机器学习及实时风险监控领域,本发明包括:1、企业风险数据库搭建;2、企业风险主题库搭建;3、训练AutoML企业风险评估模型;4、搭建风险监测预警平台;5、实现企业风险实时监测预警。采用大数据框架根据平台用户行为数据实现企业风险实时监测预警。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231107&amp;DB=EPODOC&amp;CC=CN&amp;NR=117010687A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231107&amp;DB=EPODOC&amp;CC=CN&amp;NR=117010687A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MI JUNDA</creatorcontrib><creatorcontrib>YIN PANPAN</creatorcontrib><creatorcontrib>XU HONGWEI</creatorcontrib><creatorcontrib>CUI LELE</creatorcontrib><title>Enterprise real-time risk monitoring and early warning method based on AutoML</title><description>The invention provides an enterprise real-time risk monitoring and early warning method based on AutoML, and belongs to the field of machine learning and real-time risk monitoring, and the method comprises the steps: 1, building an enterprise risk database; 2, building an enterprise risk theme library; 3, training an AutoML enterprise risk assessment model; 4, building a risk monitoring and early warning platform; and 5, real-time monitoring and early warning of enterprise risks are realized. And enterprise risk real-time monitoring and early warning are realized by adopting a big data framework according to platform user behavior data. 本发明提供一种基于AutoML的企业实时风险监测预警方法,属于机器学习及实时风险监控领域,本发明包括:1、企业风险数据库搭建;2、企业风险主题库搭建;3、训练AutoML企业风险评估模型;4、搭建风险监测预警平台;5、实现企业风险实时监测预警。采用大数据框架根据平台用户行为数据实现企业风险实时监测预警。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAQAHPxIOof1gcUGgTrtZSKB-vJe1nNqsFkN2wi4u9V8AGeZhhmaoaeC2lSnwmUMFTFx4_5fIco7Iuo5ysgOyDU8IInKn9LpHITByfM5EAY2keRYT83kwuGTIsfZ2a57Y_drqIkI-WEZ2IqY3ewtqltvd407eqf5w3NxDXn</recordid><startdate>20231107</startdate><enddate>20231107</enddate><creator>MI JUNDA</creator><creator>YIN PANPAN</creator><creator>XU HONGWEI</creator><creator>CUI LELE</creator><scope>EVB</scope></search><sort><creationdate>20231107</creationdate><title>Enterprise real-time risk monitoring and early warning method based on AutoML</title><author>MI JUNDA ; YIN PANPAN ; XU HONGWEI ; CUI LELE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117010687A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>MI JUNDA</creatorcontrib><creatorcontrib>YIN PANPAN</creatorcontrib><creatorcontrib>XU HONGWEI</creatorcontrib><creatorcontrib>CUI LELE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MI JUNDA</au><au>YIN PANPAN</au><au>XU HONGWEI</au><au>CUI LELE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Enterprise real-time risk monitoring and early warning method based on AutoML</title><date>2023-11-07</date><risdate>2023</risdate><abstract>The invention provides an enterprise real-time risk monitoring and early warning method based on AutoML, and belongs to the field of machine learning and real-time risk monitoring, and the method comprises the steps: 1, building an enterprise risk database; 2, building an enterprise risk theme library; 3, training an AutoML enterprise risk assessment model; 4, building a risk monitoring and early warning platform; and 5, real-time monitoring and early warning of enterprise risks are realized. And enterprise risk real-time monitoring and early warning are realized by adopting a big data framework according to platform user behavior data. 本发明提供一种基于AutoML的企业实时风险监测预警方法,属于机器学习及实时风险监控领域,本发明包括:1、企业风险数据库搭建;2、企业风险主题库搭建;3、训练AutoML企业风险评估模型;4、搭建风险监测预警平台;5、实现企业风险实时监测预警。采用大数据框架根据平台用户行为数据实现企业风险实时监测预警。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117010687A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Enterprise real-time risk monitoring and early warning method based on AutoML
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MI%20JUNDA&rft.date=2023-11-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117010687A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true