Satellite anomaly detection method and system based on prototype negative sample mixed comparison

The invention provides a prototype negative sample mixed comparison satellite anomaly detection method and system, and the method comprises the steps: inputting a satellite telemetry data set to a trained deep neural network model, obtaining the anomaly score of data, determining an anomaly score th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHOU TAICHUN, LI HU, XIAO ZHIGANG, LIU YURONG, HU TAI, GUO GUOHANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHOU TAICHUN
LI HU
XIAO ZHIGANG
LIU YURONG
HU TAI
GUO GUOHANG
description The invention provides a prototype negative sample mixed comparison satellite anomaly detection method and system, and the method comprises the steps: inputting a satellite telemetry data set to a trained deep neural network model, obtaining the anomaly score of data, determining an anomaly score threshold value according to an anomaly sample proportion epsilon obtained through training, sorting the anomaly scores according to an ascending order, and obtaining an anomaly score threshold value; the samples of the front epsilon are judged to be abnormal; the training process of the deep neural network model comprises the steps of clustering samples with similar semantics into the same group to obtain pseudo labels of the samples, performing sample feature mixing by taking the distance between an anchor point and a prototype to which a negative sample belongs as a weight, generating a difficult-to-negative sample, and guiding neural network learning; and constructing an abnormal fractional function by adopting t
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117009897A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117009897A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117009897A3</originalsourceid><addsrcrecordid>eNqNyjEKwkAQRuE0FqLeYTyAkGARU0pQrGy0D2P21yzs7iyZQcztTeEBrF7xvWXBNzaE4A3ESSKHiRwMvXlJFGGDuBkc6aSGSA9WOJopj2JiUwYlvNj8G6QccwBF_5mXXmLm0aukdbF4clBsfl0V2_Pp3l52yNJBM_dIsK69VlVdls2hqY_7f54vbcs-hQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Satellite anomaly detection method and system based on prototype negative sample mixed comparison</title><source>esp@cenet</source><creator>ZHOU TAICHUN ; LI HU ; XIAO ZHIGANG ; LIU YURONG ; HU TAI ; GUO GUOHANG</creator><creatorcontrib>ZHOU TAICHUN ; LI HU ; XIAO ZHIGANG ; LIU YURONG ; HU TAI ; GUO GUOHANG</creatorcontrib><description>The invention provides a prototype negative sample mixed comparison satellite anomaly detection method and system, and the method comprises the steps: inputting a satellite telemetry data set to a trained deep neural network model, obtaining the anomaly score of data, determining an anomaly score threshold value according to an anomaly sample proportion epsilon obtained through training, sorting the anomaly scores according to an ascending order, and obtaining an anomaly score threshold value; the samples of the front epsilon are judged to be abnormal; the training process of the deep neural network model comprises the steps of clustering samples with similar semantics into the same group to obtain pseudo labels of the samples, performing sample feature mixing by taking the distance between an anchor point and a prototype to which a negative sample belongs as a weight, generating a difficult-to-negative sample, and guiding neural network learning; and constructing an abnormal fractional function by adopting t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231107&amp;DB=EPODOC&amp;CC=CN&amp;NR=117009897A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231107&amp;DB=EPODOC&amp;CC=CN&amp;NR=117009897A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHOU TAICHUN</creatorcontrib><creatorcontrib>LI HU</creatorcontrib><creatorcontrib>XIAO ZHIGANG</creatorcontrib><creatorcontrib>LIU YURONG</creatorcontrib><creatorcontrib>HU TAI</creatorcontrib><creatorcontrib>GUO GUOHANG</creatorcontrib><title>Satellite anomaly detection method and system based on prototype negative sample mixed comparison</title><description>The invention provides a prototype negative sample mixed comparison satellite anomaly detection method and system, and the method comprises the steps: inputting a satellite telemetry data set to a trained deep neural network model, obtaining the anomaly score of data, determining an anomaly score threshold value according to an anomaly sample proportion epsilon obtained through training, sorting the anomaly scores according to an ascending order, and obtaining an anomaly score threshold value; the samples of the front epsilon are judged to be abnormal; the training process of the deep neural network model comprises the steps of clustering samples with similar semantics into the same group to obtain pseudo labels of the samples, performing sample feature mixing by taking the distance between an anchor point and a prototype to which a negative sample belongs as a weight, generating a difficult-to-negative sample, and guiding neural network learning; and constructing an abnormal fractional function by adopting t</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwkAQRuE0FqLeYTyAkGARU0pQrGy0D2P21yzs7iyZQcztTeEBrF7xvWXBNzaE4A3ESSKHiRwMvXlJFGGDuBkc6aSGSA9WOJopj2JiUwYlvNj8G6QccwBF_5mXXmLm0aukdbF4clBsfl0V2_Pp3l52yNJBM_dIsK69VlVdls2hqY_7f54vbcs-hQ</recordid><startdate>20231107</startdate><enddate>20231107</enddate><creator>ZHOU TAICHUN</creator><creator>LI HU</creator><creator>XIAO ZHIGANG</creator><creator>LIU YURONG</creator><creator>HU TAI</creator><creator>GUO GUOHANG</creator><scope>EVB</scope></search><sort><creationdate>20231107</creationdate><title>Satellite anomaly detection method and system based on prototype negative sample mixed comparison</title><author>ZHOU TAICHUN ; LI HU ; XIAO ZHIGANG ; LIU YURONG ; HU TAI ; GUO GUOHANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117009897A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHOU TAICHUN</creatorcontrib><creatorcontrib>LI HU</creatorcontrib><creatorcontrib>XIAO ZHIGANG</creatorcontrib><creatorcontrib>LIU YURONG</creatorcontrib><creatorcontrib>HU TAI</creatorcontrib><creatorcontrib>GUO GUOHANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHOU TAICHUN</au><au>LI HU</au><au>XIAO ZHIGANG</au><au>LIU YURONG</au><au>HU TAI</au><au>GUO GUOHANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Satellite anomaly detection method and system based on prototype negative sample mixed comparison</title><date>2023-11-07</date><risdate>2023</risdate><abstract>The invention provides a prototype negative sample mixed comparison satellite anomaly detection method and system, and the method comprises the steps: inputting a satellite telemetry data set to a trained deep neural network model, obtaining the anomaly score of data, determining an anomaly score threshold value according to an anomaly sample proportion epsilon obtained through training, sorting the anomaly scores according to an ascending order, and obtaining an anomaly score threshold value; the samples of the front epsilon are judged to be abnormal; the training process of the deep neural network model comprises the steps of clustering samples with similar semantics into the same group to obtain pseudo labels of the samples, performing sample feature mixing by taking the distance between an anchor point and a prototype to which a negative sample belongs as a weight, generating a difficult-to-negative sample, and guiding neural network learning; and constructing an abnormal fractional function by adopting t</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117009897A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Satellite anomaly detection method and system based on prototype negative sample mixed comparison
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHOU%20TAICHUN&rft.date=2023-11-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117009897A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true