Multi-target prediction and optimization method for rotary abrasive water jet polishing
The invention discloses a multi-target prediction and optimization method for rotary abrasive water jet polishing, which comprises the following steps: S1, acquiring processing parameters and processing results to obtain an experimental data set; s2, shuffling the experimental data set, and dividing...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | GE JIANGYU LI WUQIAN ZHAO JUN SONG FENGQI |
description | The invention discloses a multi-target prediction and optimization method for rotary abrasive water jet polishing, which comprises the following steps: S1, acquiring processing parameters and processing results to obtain an experimental data set; s2, shuffling the experimental data set, and dividing a training set and a test set according to a proportion; s3, using a Bayesian optimization algorithm to optimize hyper-parameters of the machine learning integration model; s4, inputting the shuffled and divided experimental data set into the optimized machine learning integration model for training and prediction; s5, selecting an optimal regression prediction model according to R2 and RMSE evaluation indexes; s6, performing multi-objective optimization by taking the optimal regression prediction model as an objective function of a multi-objective optimization algorithm; s7, selecting an optimal multi-objective optimization algorithm through the hyper-volume evaluation index; and S8, selecting an optimal solution |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117001540A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117001540A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117001540A3</originalsourceid><addsrcrecordid>eNqNjEsKwjAQQLtxIeodxgMUElRcl6K40ZXgsozttB1JMyEZFT29HzyAqwePxxtnp_3VKeeKsSOFEKnhWlk8oG9AgvLAT_yKgbSXBlqJEOXdPwDPERPfCO6oFOHyGYjj1LPvptmoRZdo9uMkm283x3KXU5CKUsCaPGlVHqxdG2NXS1Ms_mlewww6lw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-target prediction and optimization method for rotary abrasive water jet polishing</title><source>esp@cenet</source><creator>GE JIANGYU ; LI WUQIAN ; ZHAO JUN ; SONG FENGQI</creator><creatorcontrib>GE JIANGYU ; LI WUQIAN ; ZHAO JUN ; SONG FENGQI</creatorcontrib><description>The invention discloses a multi-target prediction and optimization method for rotary abrasive water jet polishing, which comprises the following steps: S1, acquiring processing parameters and processing results to obtain an experimental data set; s2, shuffling the experimental data set, and dividing a training set and a test set according to a proportion; s3, using a Bayesian optimization algorithm to optimize hyper-parameters of the machine learning integration model; s4, inputting the shuffled and divided experimental data set into the optimized machine learning integration model for training and prediction; s5, selecting an optimal regression prediction model according to R2 and RMSE evaluation indexes; s6, performing multi-objective optimization by taking the optimal regression prediction model as an objective function of a multi-objective optimization algorithm; s7, selecting an optimal multi-objective optimization algorithm through the hyper-volume evaluation index; and S8, selecting an optimal solution</description><language>chi ; eng</language><subject>ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; GRINDING ; PERFORMING OPERATIONS ; PHYSICS ; POLISHING ; TRANSPORTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231107&DB=EPODOC&CC=CN&NR=117001540A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231107&DB=EPODOC&CC=CN&NR=117001540A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GE JIANGYU</creatorcontrib><creatorcontrib>LI WUQIAN</creatorcontrib><creatorcontrib>ZHAO JUN</creatorcontrib><creatorcontrib>SONG FENGQI</creatorcontrib><title>Multi-target prediction and optimization method for rotary abrasive water jet polishing</title><description>The invention discloses a multi-target prediction and optimization method for rotary abrasive water jet polishing, which comprises the following steps: S1, acquiring processing parameters and processing results to obtain an experimental data set; s2, shuffling the experimental data set, and dividing a training set and a test set according to a proportion; s3, using a Bayesian optimization algorithm to optimize hyper-parameters of the machine learning integration model; s4, inputting the shuffled and divided experimental data set into the optimized machine learning integration model for training and prediction; s5, selecting an optimal regression prediction model according to R2 and RMSE evaluation indexes; s6, performing multi-objective optimization by taking the optimal regression prediction model as an objective function of a multi-objective optimization algorithm; s7, selecting an optimal multi-objective optimization algorithm through the hyper-volume evaluation index; and S8, selecting an optimal solution</description><subject>ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>GRINDING</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>POLISHING</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEsKwjAQQLtxIeodxgMUElRcl6K40ZXgsozttB1JMyEZFT29HzyAqwePxxtnp_3VKeeKsSOFEKnhWlk8oG9AgvLAT_yKgbSXBlqJEOXdPwDPERPfCO6oFOHyGYjj1LPvptmoRZdo9uMkm283x3KXU5CKUsCaPGlVHqxdG2NXS1Ms_mlewww6lw</recordid><startdate>20231107</startdate><enddate>20231107</enddate><creator>GE JIANGYU</creator><creator>LI WUQIAN</creator><creator>ZHAO JUN</creator><creator>SONG FENGQI</creator><scope>EVB</scope></search><sort><creationdate>20231107</creationdate><title>Multi-target prediction and optimization method for rotary abrasive water jet polishing</title><author>GE JIANGYU ; LI WUQIAN ; ZHAO JUN ; SONG FENGQI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117001540A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>GRINDING</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>POLISHING</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>GE JIANGYU</creatorcontrib><creatorcontrib>LI WUQIAN</creatorcontrib><creatorcontrib>ZHAO JUN</creatorcontrib><creatorcontrib>SONG FENGQI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GE JIANGYU</au><au>LI WUQIAN</au><au>ZHAO JUN</au><au>SONG FENGQI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-target prediction and optimization method for rotary abrasive water jet polishing</title><date>2023-11-07</date><risdate>2023</risdate><abstract>The invention discloses a multi-target prediction and optimization method for rotary abrasive water jet polishing, which comprises the following steps: S1, acquiring processing parameters and processing results to obtain an experimental data set; s2, shuffling the experimental data set, and dividing a training set and a test set according to a proportion; s3, using a Bayesian optimization algorithm to optimize hyper-parameters of the machine learning integration model; s4, inputting the shuffled and divided experimental data set into the optimized machine learning integration model for training and prediction; s5, selecting an optimal regression prediction model according to R2 and RMSE evaluation indexes; s6, performing multi-objective optimization by taking the optimal regression prediction model as an objective function of a multi-objective optimization algorithm; s7, selecting an optimal multi-objective optimization algorithm through the hyper-volume evaluation index; and S8, selecting an optimal solution</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117001540A |
source | esp@cenet |
subjects | ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING GRINDING PERFORMING OPERATIONS PHYSICS POLISHING TRANSPORTING |
title | Multi-target prediction and optimization method for rotary abrasive water jet polishing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GE%20JIANGYU&rft.date=2023-11-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117001540A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |