Multi-target prediction and optimization method for rotary abrasive water jet polishing

The invention discloses a multi-target prediction and optimization method for rotary abrasive water jet polishing, which comprises the following steps: S1, acquiring processing parameters and processing results to obtain an experimental data set; s2, shuffling the experimental data set, and dividing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GE JIANGYU, LI WUQIAN, ZHAO JUN, SONG FENGQI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GE JIANGYU
LI WUQIAN
ZHAO JUN
SONG FENGQI
description The invention discloses a multi-target prediction and optimization method for rotary abrasive water jet polishing, which comprises the following steps: S1, acquiring processing parameters and processing results to obtain an experimental data set; s2, shuffling the experimental data set, and dividing a training set and a test set according to a proportion; s3, using a Bayesian optimization algorithm to optimize hyper-parameters of the machine learning integration model; s4, inputting the shuffled and divided experimental data set into the optimized machine learning integration model for training and prediction; s5, selecting an optimal regression prediction model according to R2 and RMSE evaluation indexes; s6, performing multi-objective optimization by taking the optimal regression prediction model as an objective function of a multi-objective optimization algorithm; s7, selecting an optimal multi-objective optimization algorithm through the hyper-volume evaluation index; and S8, selecting an optimal solution
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117001540A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117001540A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117001540A3</originalsourceid><addsrcrecordid>eNqNjEsKwjAQQLtxIeodxgMUElRcl6K40ZXgsozttB1JMyEZFT29HzyAqwePxxtnp_3VKeeKsSOFEKnhWlk8oG9AgvLAT_yKgbSXBlqJEOXdPwDPERPfCO6oFOHyGYjj1LPvptmoRZdo9uMkm283x3KXU5CKUsCaPGlVHqxdG2NXS1Ms_mlewww6lw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-target prediction and optimization method for rotary abrasive water jet polishing</title><source>esp@cenet</source><creator>GE JIANGYU ; LI WUQIAN ; ZHAO JUN ; SONG FENGQI</creator><creatorcontrib>GE JIANGYU ; LI WUQIAN ; ZHAO JUN ; SONG FENGQI</creatorcontrib><description>The invention discloses a multi-target prediction and optimization method for rotary abrasive water jet polishing, which comprises the following steps: S1, acquiring processing parameters and processing results to obtain an experimental data set; s2, shuffling the experimental data set, and dividing a training set and a test set according to a proportion; s3, using a Bayesian optimization algorithm to optimize hyper-parameters of the machine learning integration model; s4, inputting the shuffled and divided experimental data set into the optimized machine learning integration model for training and prediction; s5, selecting an optimal regression prediction model according to R2 and RMSE evaluation indexes; s6, performing multi-objective optimization by taking the optimal regression prediction model as an objective function of a multi-objective optimization algorithm; s7, selecting an optimal multi-objective optimization algorithm through the hyper-volume evaluation index; and S8, selecting an optimal solution</description><language>chi ; eng</language><subject>ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; GRINDING ; PERFORMING OPERATIONS ; PHYSICS ; POLISHING ; TRANSPORTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231107&amp;DB=EPODOC&amp;CC=CN&amp;NR=117001540A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231107&amp;DB=EPODOC&amp;CC=CN&amp;NR=117001540A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GE JIANGYU</creatorcontrib><creatorcontrib>LI WUQIAN</creatorcontrib><creatorcontrib>ZHAO JUN</creatorcontrib><creatorcontrib>SONG FENGQI</creatorcontrib><title>Multi-target prediction and optimization method for rotary abrasive water jet polishing</title><description>The invention discloses a multi-target prediction and optimization method for rotary abrasive water jet polishing, which comprises the following steps: S1, acquiring processing parameters and processing results to obtain an experimental data set; s2, shuffling the experimental data set, and dividing a training set and a test set according to a proportion; s3, using a Bayesian optimization algorithm to optimize hyper-parameters of the machine learning integration model; s4, inputting the shuffled and divided experimental data set into the optimized machine learning integration model for training and prediction; s5, selecting an optimal regression prediction model according to R2 and RMSE evaluation indexes; s6, performing multi-objective optimization by taking the optimal regression prediction model as an objective function of a multi-objective optimization algorithm; s7, selecting an optimal multi-objective optimization algorithm through the hyper-volume evaluation index; and S8, selecting an optimal solution</description><subject>ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>GRINDING</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>POLISHING</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEsKwjAQQLtxIeodxgMUElRcl6K40ZXgsozttB1JMyEZFT29HzyAqwePxxtnp_3VKeeKsSOFEKnhWlk8oG9AgvLAT_yKgbSXBlqJEOXdPwDPERPfCO6oFOHyGYjj1LPvptmoRZdo9uMkm283x3KXU5CKUsCaPGlVHqxdG2NXS1Ms_mlewww6lw</recordid><startdate>20231107</startdate><enddate>20231107</enddate><creator>GE JIANGYU</creator><creator>LI WUQIAN</creator><creator>ZHAO JUN</creator><creator>SONG FENGQI</creator><scope>EVB</scope></search><sort><creationdate>20231107</creationdate><title>Multi-target prediction and optimization method for rotary abrasive water jet polishing</title><author>GE JIANGYU ; LI WUQIAN ; ZHAO JUN ; SONG FENGQI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117001540A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>GRINDING</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>POLISHING</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>GE JIANGYU</creatorcontrib><creatorcontrib>LI WUQIAN</creatorcontrib><creatorcontrib>ZHAO JUN</creatorcontrib><creatorcontrib>SONG FENGQI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GE JIANGYU</au><au>LI WUQIAN</au><au>ZHAO JUN</au><au>SONG FENGQI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-target prediction and optimization method for rotary abrasive water jet polishing</title><date>2023-11-07</date><risdate>2023</risdate><abstract>The invention discloses a multi-target prediction and optimization method for rotary abrasive water jet polishing, which comprises the following steps: S1, acquiring processing parameters and processing results to obtain an experimental data set; s2, shuffling the experimental data set, and dividing a training set and a test set according to a proportion; s3, using a Bayesian optimization algorithm to optimize hyper-parameters of the machine learning integration model; s4, inputting the shuffled and divided experimental data set into the optimized machine learning integration model for training and prediction; s5, selecting an optimal regression prediction model according to R2 and RMSE evaluation indexes; s6, performing multi-objective optimization by taking the optimal regression prediction model as an objective function of a multi-objective optimization algorithm; s7, selecting an optimal multi-objective optimization algorithm through the hyper-volume evaluation index; and S8, selecting an optimal solution</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117001540A
source esp@cenet
subjects ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
GRINDING
PERFORMING OPERATIONS
PHYSICS
POLISHING
TRANSPORTING
title Multi-target prediction and optimization method for rotary abrasive water jet polishing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GE%20JIANGYU&rft.date=2023-11-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117001540A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true