Low-speed eye movement signal detection method, device and application

The invention relates to a low-speed eye movement signal detection method. The method comprises the following steps: acquiring a horizontal eye movement signal in real time, sliding on the horizontal eye movement signal by using a sliding window with preset duration and step length, acquiring a curr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JIAO YINGYING, JIAO ZHUQING, HE XIUJIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JIAO YINGYING
JIAO ZHUQING
HE XIUJIN
description The invention relates to a low-speed eye movement signal detection method. The method comprises the following steps: acquiring a horizontal eye movement signal in real time, sliding on the horizontal eye movement signal by using a sliding window with preset duration and step length, acquiring a current window data sample of each sliding, and inputting the current window data sample into a trained multi-scale one-dimensional convolutional neural network model for prediction; the current window data sample passes through a plurality of down-sampling branches with preset down-sampling rates to generate a plurality of electro-oculogram signal branches with different scales; performing one-dimensional convolution operation and maximum pooling operation on each electro-oculogram signal branch to generate a corresponding one-dimensional feature map; and connecting the plurality of one-dimensional feature maps corresponding to the current window data sample to obtain a corresponding full-connection feature map, and j
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116999019A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116999019A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116999019A3</originalsourceid><addsrcrecordid>eNqNirEKAjEQBdNYiPoPa--BQRBSyuFhIVb2x5I8NZBsAllO_HsV_ACrgZmZm-Fcnl2rQCC8QLlMyBClFu_CiQIUXmMRytBHCZuPmaIHsQTiWlP0_M1LM7txalj9uDDr4XjtTx1qGdEqewh07C_W7p1zW-sOu3-eNxyJM4Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Low-speed eye movement signal detection method, device and application</title><source>esp@cenet</source><creator>JIAO YINGYING ; JIAO ZHUQING ; HE XIUJIN</creator><creatorcontrib>JIAO YINGYING ; JIAO ZHUQING ; HE XIUJIN</creatorcontrib><description>The invention relates to a low-speed eye movement signal detection method. The method comprises the following steps: acquiring a horizontal eye movement signal in real time, sliding on the horizontal eye movement signal by using a sliding window with preset duration and step length, acquiring a current window data sample of each sliding, and inputting the current window data sample into a trained multi-scale one-dimensional convolutional neural network model for prediction; the current window data sample passes through a plurality of down-sampling branches with preset down-sampling rates to generate a plurality of electro-oculogram signal branches with different scales; performing one-dimensional convolution operation and maximum pooling operation on each electro-oculogram signal branch to generate a corresponding one-dimensional feature map; and connecting the plurality of one-dimensional feature maps corresponding to the current window data sample to obtain a corresponding full-connection feature map, and j</description><language>chi ; eng</language><subject>DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; SURGERY</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231107&amp;DB=EPODOC&amp;CC=CN&amp;NR=116999019A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231107&amp;DB=EPODOC&amp;CC=CN&amp;NR=116999019A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JIAO YINGYING</creatorcontrib><creatorcontrib>JIAO ZHUQING</creatorcontrib><creatorcontrib>HE XIUJIN</creatorcontrib><title>Low-speed eye movement signal detection method, device and application</title><description>The invention relates to a low-speed eye movement signal detection method. The method comprises the following steps: acquiring a horizontal eye movement signal in real time, sliding on the horizontal eye movement signal by using a sliding window with preset duration and step length, acquiring a current window data sample of each sliding, and inputting the current window data sample into a trained multi-scale one-dimensional convolutional neural network model for prediction; the current window data sample passes through a plurality of down-sampling branches with preset down-sampling rates to generate a plurality of electro-oculogram signal branches with different scales; performing one-dimensional convolution operation and maximum pooling operation on each electro-oculogram signal branch to generate a corresponding one-dimensional feature map; and connecting the plurality of one-dimensional feature maps corresponding to the current window data sample to obtain a corresponding full-connection feature map, and j</description><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKAjEQBdNYiPoPa--BQRBSyuFhIVb2x5I8NZBsAllO_HsV_ACrgZmZm-Fcnl2rQCC8QLlMyBClFu_CiQIUXmMRytBHCZuPmaIHsQTiWlP0_M1LM7txalj9uDDr4XjtTx1qGdEqewh07C_W7p1zW-sOu3-eNxyJM4Y</recordid><startdate>20231107</startdate><enddate>20231107</enddate><creator>JIAO YINGYING</creator><creator>JIAO ZHUQING</creator><creator>HE XIUJIN</creator><scope>EVB</scope></search><sort><creationdate>20231107</creationdate><title>Low-speed eye movement signal detection method, device and application</title><author>JIAO YINGYING ; JIAO ZHUQING ; HE XIUJIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116999019A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>JIAO YINGYING</creatorcontrib><creatorcontrib>JIAO ZHUQING</creatorcontrib><creatorcontrib>HE XIUJIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JIAO YINGYING</au><au>JIAO ZHUQING</au><au>HE XIUJIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Low-speed eye movement signal detection method, device and application</title><date>2023-11-07</date><risdate>2023</risdate><abstract>The invention relates to a low-speed eye movement signal detection method. The method comprises the following steps: acquiring a horizontal eye movement signal in real time, sliding on the horizontal eye movement signal by using a sliding window with preset duration and step length, acquiring a current window data sample of each sliding, and inputting the current window data sample into a trained multi-scale one-dimensional convolutional neural network model for prediction; the current window data sample passes through a plurality of down-sampling branches with preset down-sampling rates to generate a plurality of electro-oculogram signal branches with different scales; performing one-dimensional convolution operation and maximum pooling operation on each electro-oculogram signal branch to generate a corresponding one-dimensional feature map; and connecting the plurality of one-dimensional feature maps corresponding to the current window data sample to obtain a corresponding full-connection feature map, and j</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116999019A
source esp@cenet
subjects DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
SURGERY
title Low-speed eye movement signal detection method, device and application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JIAO%20YINGYING&rft.date=2023-11-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116999019A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true