Micromechanics equivalent modeling method for composite solid propellant

The invention discloses a composite solid propellant mesomechanics equivalent modeling method, and belongs to the technical field of spaceflight. The method specifically comprises the following steps: firstly, dividing oxidant particles in an actual formula of the composite solid propellant into sma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MAO CHENGLI, GAO HUANRAN, ZHANG JIANWEI, GENG WANGYANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MAO CHENGLI
GAO HUANRAN
ZHANG JIANWEI
GENG WANGYANG
description The invention discloses a composite solid propellant mesomechanics equivalent modeling method, and belongs to the technical field of spaceflight. The method specifically comprises the following steps: firstly, dividing oxidant particles in an actual formula of the composite solid propellant into small particles and large particles; then, in combination with a molecular dynamics method, inputting particle sizes and volume fractions of small particles, and establishing an equivalent matrix model; through finite element simulation calculation, fixed strain is loaded at the two ends of the model, and a stress relaxation curve of the equivalent matrix model is output. Similarly, inputting the particle size and the volume fraction of the large particles, taking the stress relaxation curve as a material parameter of an equivalent matrix material, and establishing an equivalent mesoscopic model as a physical model; and finally, calculating the macro-performance of the physical model in combination with commercial num
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116994676A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116994676A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116994676A3</originalsourceid><addsrcrecordid>eNqNyjEOwjAMBdAuDAi4gzkAQwUK6lhVoC4wsVdR8kstOXFIAudn4QBMb3nrZryxyxrgFhvZFcLrzR8riJWCegjHJwXURT3NmslpSFq4gooKe0pZE0RsrNtmNVsp2P3cNPvr5TGMBySdUJJ1iKjTcG9b03Unczb98Z_zBRtsNVo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Micromechanics equivalent modeling method for composite solid propellant</title><source>esp@cenet</source><creator>MAO CHENGLI ; GAO HUANRAN ; ZHANG JIANWEI ; GENG WANGYANG</creator><creatorcontrib>MAO CHENGLI ; GAO HUANRAN ; ZHANG JIANWEI ; GENG WANGYANG</creatorcontrib><description>The invention discloses a composite solid propellant mesomechanics equivalent modeling method, and belongs to the technical field of spaceflight. The method specifically comprises the following steps: firstly, dividing oxidant particles in an actual formula of the composite solid propellant into small particles and large particles; then, in combination with a molecular dynamics method, inputting particle sizes and volume fractions of small particles, and establishing an equivalent matrix model; through finite element simulation calculation, fixed strain is loaded at the two ends of the model, and a stress relaxation curve of the equivalent matrix model is output. Similarly, inputting the particle size and the volume fraction of the large particles, taking the stress relaxation curve as a material parameter of an equivalent matrix material, and establishing an equivalent mesoscopic model as a physical model; and finally, calculating the macro-performance of the physical model in combination with commercial num</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231103&amp;DB=EPODOC&amp;CC=CN&amp;NR=116994676A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231103&amp;DB=EPODOC&amp;CC=CN&amp;NR=116994676A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MAO CHENGLI</creatorcontrib><creatorcontrib>GAO HUANRAN</creatorcontrib><creatorcontrib>ZHANG JIANWEI</creatorcontrib><creatorcontrib>GENG WANGYANG</creatorcontrib><title>Micromechanics equivalent modeling method for composite solid propellant</title><description>The invention discloses a composite solid propellant mesomechanics equivalent modeling method, and belongs to the technical field of spaceflight. The method specifically comprises the following steps: firstly, dividing oxidant particles in an actual formula of the composite solid propellant into small particles and large particles; then, in combination with a molecular dynamics method, inputting particle sizes and volume fractions of small particles, and establishing an equivalent matrix model; through finite element simulation calculation, fixed strain is loaded at the two ends of the model, and a stress relaxation curve of the equivalent matrix model is output. Similarly, inputting the particle size and the volume fraction of the large particles, taking the stress relaxation curve as a material parameter of an equivalent matrix material, and establishing an equivalent mesoscopic model as a physical model; and finally, calculating the macro-performance of the physical model in combination with commercial num</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMBdAuDAi4gzkAQwUK6lhVoC4wsVdR8kstOXFIAudn4QBMb3nrZryxyxrgFhvZFcLrzR8riJWCegjHJwXURT3NmslpSFq4gooKe0pZE0RsrNtmNVsp2P3cNPvr5TGMBySdUJJ1iKjTcG9b03Unczb98Z_zBRtsNVo</recordid><startdate>20231103</startdate><enddate>20231103</enddate><creator>MAO CHENGLI</creator><creator>GAO HUANRAN</creator><creator>ZHANG JIANWEI</creator><creator>GENG WANGYANG</creator><scope>EVB</scope></search><sort><creationdate>20231103</creationdate><title>Micromechanics equivalent modeling method for composite solid propellant</title><author>MAO CHENGLI ; GAO HUANRAN ; ZHANG JIANWEI ; GENG WANGYANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116994676A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MAO CHENGLI</creatorcontrib><creatorcontrib>GAO HUANRAN</creatorcontrib><creatorcontrib>ZHANG JIANWEI</creatorcontrib><creatorcontrib>GENG WANGYANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MAO CHENGLI</au><au>GAO HUANRAN</au><au>ZHANG JIANWEI</au><au>GENG WANGYANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Micromechanics equivalent modeling method for composite solid propellant</title><date>2023-11-03</date><risdate>2023</risdate><abstract>The invention discloses a composite solid propellant mesomechanics equivalent modeling method, and belongs to the technical field of spaceflight. The method specifically comprises the following steps: firstly, dividing oxidant particles in an actual formula of the composite solid propellant into small particles and large particles; then, in combination with a molecular dynamics method, inputting particle sizes and volume fractions of small particles, and establishing an equivalent matrix model; through finite element simulation calculation, fixed strain is loaded at the two ends of the model, and a stress relaxation curve of the equivalent matrix model is output. Similarly, inputting the particle size and the volume fraction of the large particles, taking the stress relaxation curve as a material parameter of an equivalent matrix material, and establishing an equivalent mesoscopic model as a physical model; and finally, calculating the macro-performance of the physical model in combination with commercial num</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116994676A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title Micromechanics equivalent modeling method for composite solid propellant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MAO%20CHENGLI&rft.date=2023-11-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116994676A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true