Method and device for generating confrontation chartlet for resisting AI self-aiming cheating

The invention discloses an adversarial map generation method and device for resisting AI auto-collimation cheating, and the method comprises the steps: inputting a noise data set # imgabs0 # into a detector which is pre-constructed based on a neural network, and obtaining a neural network detection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN XIANYI, YAN KAI, XU LINFENG, JIANG DONG, QIAN YUTAO, GU JUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN XIANYI
YAN KAI
XU LINFENG
JIANG DONG
QIAN YUTAO
GU JUN
description The invention discloses an adversarial map generation method and device for resisting AI auto-collimation cheating, and the method comprises the steps: inputting a noise data set # imgabs0 # into a detector which is pre-constructed based on a neural network, and obtaining a neural network detection result; calculating a loss value Loss according to the real classification label and a neural network detection result; performing back propagation on the loss value Loss, and updating the noise image n through a gradient descent method; iterating repeatedly until the loss value Loss converges, and outputting a trained noise image # imgabs1 #; the trained noise image # imgabs2 # is converted into an adversarial map; fusing the trained noise image # imgabs3 # with a game article map file, and fusing an adversarial map with a game ground map file to resist AI self-aiming cheating; the confrontation chartlet enables the AI self-aiming cheating program to recognize a game picture into a plurality of player targets, so
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116993893A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116993893A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116993893A3</originalsourceid><addsrcrecordid>eNqNjUEKwjAQRbNxIeodxgN0UQJil6UoutCVWylDMmkC6aQkg-e3BA_g6vPgPf5WvR8kPllAtmDpEwyBSxkmYsoogScwiV1OLCslBuMxSySpVqYSSpX6OxSKrsEw18ZTjfdq4zAWOvx2p47Xy2u4NbSkkcqCZv2RcXi27anr9LnTvf7H-QLzfjxI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method and device for generating confrontation chartlet for resisting AI self-aiming cheating</title><source>esp@cenet</source><creator>CHEN XIANYI ; YAN KAI ; XU LINFENG ; JIANG DONG ; QIAN YUTAO ; GU JUN</creator><creatorcontrib>CHEN XIANYI ; YAN KAI ; XU LINFENG ; JIANG DONG ; QIAN YUTAO ; GU JUN</creatorcontrib><description>The invention discloses an adversarial map generation method and device for resisting AI auto-collimation cheating, and the method comprises the steps: inputting a noise data set # imgabs0 # into a detector which is pre-constructed based on a neural network, and obtaining a neural network detection result; calculating a loss value Loss according to the real classification label and a neural network detection result; performing back propagation on the loss value Loss, and updating the noise image n through a gradient descent method; iterating repeatedly until the loss value Loss converges, and outputting a trained noise image # imgabs1 #; the trained noise image # imgabs2 # is converted into an adversarial map; fusing the trained noise image # imgabs3 # with a game article map file, and fusing an adversarial map with a game ground map file to resist AI self-aiming cheating; the confrontation chartlet enables the AI self-aiming cheating program to recognize a game picture into a plurality of player targets, so</description><language>chi ; eng</language><subject>AMUSEMENTS ; CALCULATING ; CARD, BOARD, OR ROULETTE GAMES ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; GAMES ; GAMES NOT OTHERWISE PROVIDED FOR ; HUMAN NECESSITIES ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; INDOOR GAMES USING SMALL MOVING PLAYING BODIES ; PHYSICS ; SPORTS ; VIDEO GAMES</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231103&amp;DB=EPODOC&amp;CC=CN&amp;NR=116993893A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231103&amp;DB=EPODOC&amp;CC=CN&amp;NR=116993893A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN XIANYI</creatorcontrib><creatorcontrib>YAN KAI</creatorcontrib><creatorcontrib>XU LINFENG</creatorcontrib><creatorcontrib>JIANG DONG</creatorcontrib><creatorcontrib>QIAN YUTAO</creatorcontrib><creatorcontrib>GU JUN</creatorcontrib><title>Method and device for generating confrontation chartlet for resisting AI self-aiming cheating</title><description>The invention discloses an adversarial map generation method and device for resisting AI auto-collimation cheating, and the method comprises the steps: inputting a noise data set # imgabs0 # into a detector which is pre-constructed based on a neural network, and obtaining a neural network detection result; calculating a loss value Loss according to the real classification label and a neural network detection result; performing back propagation on the loss value Loss, and updating the noise image n through a gradient descent method; iterating repeatedly until the loss value Loss converges, and outputting a trained noise image # imgabs1 #; the trained noise image # imgabs2 # is converted into an adversarial map; fusing the trained noise image # imgabs3 # with a game article map file, and fusing an adversarial map with a game ground map file to resist AI self-aiming cheating; the confrontation chartlet enables the AI self-aiming cheating program to recognize a game picture into a plurality of player targets, so</description><subject>AMUSEMENTS</subject><subject>CALCULATING</subject><subject>CARD, BOARD, OR ROULETTE GAMES</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>GAMES</subject><subject>GAMES NOT OTHERWISE PROVIDED FOR</subject><subject>HUMAN NECESSITIES</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>INDOOR GAMES USING SMALL MOVING PLAYING BODIES</subject><subject>PHYSICS</subject><subject>SPORTS</subject><subject>VIDEO GAMES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwjAQRbNxIeodxgN0UQJil6UoutCVWylDMmkC6aQkg-e3BA_g6vPgPf5WvR8kPllAtmDpEwyBSxkmYsoogScwiV1OLCslBuMxSySpVqYSSpX6OxSKrsEw18ZTjfdq4zAWOvx2p47Xy2u4NbSkkcqCZv2RcXi27anr9LnTvf7H-QLzfjxI</recordid><startdate>20231103</startdate><enddate>20231103</enddate><creator>CHEN XIANYI</creator><creator>YAN KAI</creator><creator>XU LINFENG</creator><creator>JIANG DONG</creator><creator>QIAN YUTAO</creator><creator>GU JUN</creator><scope>EVB</scope></search><sort><creationdate>20231103</creationdate><title>Method and device for generating confrontation chartlet for resisting AI self-aiming cheating</title><author>CHEN XIANYI ; YAN KAI ; XU LINFENG ; JIANG DONG ; QIAN YUTAO ; GU JUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116993893A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>AMUSEMENTS</topic><topic>CALCULATING</topic><topic>CARD, BOARD, OR ROULETTE GAMES</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>GAMES</topic><topic>GAMES NOT OTHERWISE PROVIDED FOR</topic><topic>HUMAN NECESSITIES</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>INDOOR GAMES USING SMALL MOVING PLAYING BODIES</topic><topic>PHYSICS</topic><topic>SPORTS</topic><topic>VIDEO GAMES</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN XIANYI</creatorcontrib><creatorcontrib>YAN KAI</creatorcontrib><creatorcontrib>XU LINFENG</creatorcontrib><creatorcontrib>JIANG DONG</creatorcontrib><creatorcontrib>QIAN YUTAO</creatorcontrib><creatorcontrib>GU JUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN XIANYI</au><au>YAN KAI</au><au>XU LINFENG</au><au>JIANG DONG</au><au>QIAN YUTAO</au><au>GU JUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method and device for generating confrontation chartlet for resisting AI self-aiming cheating</title><date>2023-11-03</date><risdate>2023</risdate><abstract>The invention discloses an adversarial map generation method and device for resisting AI auto-collimation cheating, and the method comprises the steps: inputting a noise data set # imgabs0 # into a detector which is pre-constructed based on a neural network, and obtaining a neural network detection result; calculating a loss value Loss according to the real classification label and a neural network detection result; performing back propagation on the loss value Loss, and updating the noise image n through a gradient descent method; iterating repeatedly until the loss value Loss converges, and outputting a trained noise image # imgabs1 #; the trained noise image # imgabs2 # is converted into an adversarial map; fusing the trained noise image # imgabs3 # with a game article map file, and fusing an adversarial map with a game ground map file to resist AI self-aiming cheating; the confrontation chartlet enables the AI self-aiming cheating program to recognize a game picture into a plurality of player targets, so</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116993893A
source esp@cenet
subjects AMUSEMENTS
CALCULATING
CARD, BOARD, OR ROULETTE GAMES
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
GAMES
GAMES NOT OTHERWISE PROVIDED FOR
HUMAN NECESSITIES
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
INDOOR GAMES USING SMALL MOVING PLAYING BODIES
PHYSICS
SPORTS
VIDEO GAMES
title Method and device for generating confrontation chartlet for resisting AI self-aiming cheating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20XIANYI&rft.date=2023-11-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116993893A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true