Method and device for generating confrontation chartlet for resisting AI self-aiming cheating
The invention discloses an adversarial map generation method and device for resisting AI auto-collimation cheating, and the method comprises the steps: inputting a noise data set # imgabs0 # into a detector which is pre-constructed based on a neural network, and obtaining a neural network detection...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHEN XIANYI YAN KAI XU LINFENG JIANG DONG QIAN YUTAO GU JUN |
description | The invention discloses an adversarial map generation method and device for resisting AI auto-collimation cheating, and the method comprises the steps: inputting a noise data set # imgabs0 # into a detector which is pre-constructed based on a neural network, and obtaining a neural network detection result; calculating a loss value Loss according to the real classification label and a neural network detection result; performing back propagation on the loss value Loss, and updating the noise image n through a gradient descent method; iterating repeatedly until the loss value Loss converges, and outputting a trained noise image # imgabs1 #; the trained noise image # imgabs2 # is converted into an adversarial map; fusing the trained noise image # imgabs3 # with a game article map file, and fusing an adversarial map with a game ground map file to resist AI self-aiming cheating; the confrontation chartlet enables the AI self-aiming cheating program to recognize a game picture into a plurality of player targets, so |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116993893A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116993893A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116993893A3</originalsourceid><addsrcrecordid>eNqNjUEKwjAQRbNxIeodxgN0UQJil6UoutCVWylDMmkC6aQkg-e3BA_g6vPgPf5WvR8kPllAtmDpEwyBSxkmYsoogScwiV1OLCslBuMxSySpVqYSSpX6OxSKrsEw18ZTjfdq4zAWOvx2p47Xy2u4NbSkkcqCZv2RcXi27anr9LnTvf7H-QLzfjxI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method and device for generating confrontation chartlet for resisting AI self-aiming cheating</title><source>esp@cenet</source><creator>CHEN XIANYI ; YAN KAI ; XU LINFENG ; JIANG DONG ; QIAN YUTAO ; GU JUN</creator><creatorcontrib>CHEN XIANYI ; YAN KAI ; XU LINFENG ; JIANG DONG ; QIAN YUTAO ; GU JUN</creatorcontrib><description>The invention discloses an adversarial map generation method and device for resisting AI auto-collimation cheating, and the method comprises the steps: inputting a noise data set # imgabs0 # into a detector which is pre-constructed based on a neural network, and obtaining a neural network detection result; calculating a loss value Loss according to the real classification label and a neural network detection result; performing back propagation on the loss value Loss, and updating the noise image n through a gradient descent method; iterating repeatedly until the loss value Loss converges, and outputting a trained noise image # imgabs1 #; the trained noise image # imgabs2 # is converted into an adversarial map; fusing the trained noise image # imgabs3 # with a game article map file, and fusing an adversarial map with a game ground map file to resist AI self-aiming cheating; the confrontation chartlet enables the AI self-aiming cheating program to recognize a game picture into a plurality of player targets, so</description><language>chi ; eng</language><subject>AMUSEMENTS ; CALCULATING ; CARD, BOARD, OR ROULETTE GAMES ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; GAMES ; GAMES NOT OTHERWISE PROVIDED FOR ; HUMAN NECESSITIES ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; INDOOR GAMES USING SMALL MOVING PLAYING BODIES ; PHYSICS ; SPORTS ; VIDEO GAMES</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231103&DB=EPODOC&CC=CN&NR=116993893A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231103&DB=EPODOC&CC=CN&NR=116993893A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN XIANYI</creatorcontrib><creatorcontrib>YAN KAI</creatorcontrib><creatorcontrib>XU LINFENG</creatorcontrib><creatorcontrib>JIANG DONG</creatorcontrib><creatorcontrib>QIAN YUTAO</creatorcontrib><creatorcontrib>GU JUN</creatorcontrib><title>Method and device for generating confrontation chartlet for resisting AI self-aiming cheating</title><description>The invention discloses an adversarial map generation method and device for resisting AI auto-collimation cheating, and the method comprises the steps: inputting a noise data set # imgabs0 # into a detector which is pre-constructed based on a neural network, and obtaining a neural network detection result; calculating a loss value Loss according to the real classification label and a neural network detection result; performing back propagation on the loss value Loss, and updating the noise image n through a gradient descent method; iterating repeatedly until the loss value Loss converges, and outputting a trained noise image # imgabs1 #; the trained noise image # imgabs2 # is converted into an adversarial map; fusing the trained noise image # imgabs3 # with a game article map file, and fusing an adversarial map with a game ground map file to resist AI self-aiming cheating; the confrontation chartlet enables the AI self-aiming cheating program to recognize a game picture into a plurality of player targets, so</description><subject>AMUSEMENTS</subject><subject>CALCULATING</subject><subject>CARD, BOARD, OR ROULETTE GAMES</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>GAMES</subject><subject>GAMES NOT OTHERWISE PROVIDED FOR</subject><subject>HUMAN NECESSITIES</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>INDOOR GAMES USING SMALL MOVING PLAYING BODIES</subject><subject>PHYSICS</subject><subject>SPORTS</subject><subject>VIDEO GAMES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwjAQRbNxIeodxgN0UQJil6UoutCVWylDMmkC6aQkg-e3BA_g6vPgPf5WvR8kPllAtmDpEwyBSxkmYsoogScwiV1OLCslBuMxSySpVqYSSpX6OxSKrsEw18ZTjfdq4zAWOvx2p47Xy2u4NbSkkcqCZv2RcXi27anr9LnTvf7H-QLzfjxI</recordid><startdate>20231103</startdate><enddate>20231103</enddate><creator>CHEN XIANYI</creator><creator>YAN KAI</creator><creator>XU LINFENG</creator><creator>JIANG DONG</creator><creator>QIAN YUTAO</creator><creator>GU JUN</creator><scope>EVB</scope></search><sort><creationdate>20231103</creationdate><title>Method and device for generating confrontation chartlet for resisting AI self-aiming cheating</title><author>CHEN XIANYI ; YAN KAI ; XU LINFENG ; JIANG DONG ; QIAN YUTAO ; GU JUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116993893A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>AMUSEMENTS</topic><topic>CALCULATING</topic><topic>CARD, BOARD, OR ROULETTE GAMES</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>GAMES</topic><topic>GAMES NOT OTHERWISE PROVIDED FOR</topic><topic>HUMAN NECESSITIES</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>INDOOR GAMES USING SMALL MOVING PLAYING BODIES</topic><topic>PHYSICS</topic><topic>SPORTS</topic><topic>VIDEO GAMES</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN XIANYI</creatorcontrib><creatorcontrib>YAN KAI</creatorcontrib><creatorcontrib>XU LINFENG</creatorcontrib><creatorcontrib>JIANG DONG</creatorcontrib><creatorcontrib>QIAN YUTAO</creatorcontrib><creatorcontrib>GU JUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN XIANYI</au><au>YAN KAI</au><au>XU LINFENG</au><au>JIANG DONG</au><au>QIAN YUTAO</au><au>GU JUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method and device for generating confrontation chartlet for resisting AI self-aiming cheating</title><date>2023-11-03</date><risdate>2023</risdate><abstract>The invention discloses an adversarial map generation method and device for resisting AI auto-collimation cheating, and the method comprises the steps: inputting a noise data set # imgabs0 # into a detector which is pre-constructed based on a neural network, and obtaining a neural network detection result; calculating a loss value Loss according to the real classification label and a neural network detection result; performing back propagation on the loss value Loss, and updating the noise image n through a gradient descent method; iterating repeatedly until the loss value Loss converges, and outputting a trained noise image # imgabs1 #; the trained noise image # imgabs2 # is converted into an adversarial map; fusing the trained noise image # imgabs3 # with a game article map file, and fusing an adversarial map with a game ground map file to resist AI self-aiming cheating; the confrontation chartlet enables the AI self-aiming cheating program to recognize a game picture into a plurality of player targets, so</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116993893A |
source | esp@cenet |
subjects | AMUSEMENTS CALCULATING CARD, BOARD, OR ROULETTE GAMES COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING GAMES GAMES NOT OTHERWISE PROVIDED FOR HUMAN NECESSITIES IMAGE DATA PROCESSING OR GENERATION, IN GENERAL INDOOR GAMES USING SMALL MOVING PLAYING BODIES PHYSICS SPORTS VIDEO GAMES |
title | Method and device for generating confrontation chartlet for resisting AI self-aiming cheating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20XIANYI&rft.date=2023-11-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116993893A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |