Robot agent skill learning and generalization method based on case reasoning

The invention relates to the field of robot agent skill learning, in particular to a case reasoning-based robot agent skill learning and generalization method, which comprises the following steps of: constructing a case library, acquiring a target case which is most similar to each state vector of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HUANG PANFENG, LIU ZHENGXIONG, MA ZHIQIANG, CHANG HAITAO, WANG GAOZHAO, LIU XING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HUANG PANFENG
LIU ZHENGXIONG
MA ZHIQIANG
CHANG HAITAO
WANG GAOZHAO
LIU XING
description The invention relates to the field of robot agent skill learning, in particular to a case reasoning-based robot agent skill learning and generalization method, which comprises the following steps of: constructing a case library, acquiring a target case which is most similar to each state vector of a robot agent in a current task scene in the case library, and obtaining an initial action strategy in the current task scene, obtaining a target action strategy, and obtaining a final action strategy. According to the method, the problem of low interpretability of the action strategy caused by using the deep neural network to fit the action strategy is solved, and the task efficiency of the robot intelligent agent is improved. 本发明涉及机器人智能体技能学习领域,具体涉及一种基于案例推理的机器人智能体技能学习与泛化方法,包括:构建案例库,获取案例库中与当前任务场景下的机器人智能体的每个状态向量最相似的目标案例,获取当前任务场景下的初始动作策略,获取目标动作策略,获取最终动作策略。本方法克服了使用深度神经网络拟合动作策略带来的动作策略可解释性低的问题,提高了机器人智能体的任务效率。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116992964A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116992964A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116992964A3</originalsourceid><addsrcrecordid>eNrjZPAJyk_KL1FITE_NK1Eozs7MyVHISU0sysvMS1dIzEtRAIqnFiXmZFYllmTm5ynkppZk5KcoJCUWp6YoAPnJQIZCUWpicT5IBw8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSEwGmlYS7-xnaGhmaWlkaWbiaEyMGgCZBzXj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Robot agent skill learning and generalization method based on case reasoning</title><source>esp@cenet</source><creator>HUANG PANFENG ; LIU ZHENGXIONG ; MA ZHIQIANG ; CHANG HAITAO ; WANG GAOZHAO ; LIU XING</creator><creatorcontrib>HUANG PANFENG ; LIU ZHENGXIONG ; MA ZHIQIANG ; CHANG HAITAO ; WANG GAOZHAO ; LIU XING</creatorcontrib><description>The invention relates to the field of robot agent skill learning, in particular to a case reasoning-based robot agent skill learning and generalization method, which comprises the following steps of: constructing a case library, acquiring a target case which is most similar to each state vector of a robot agent in a current task scene in the case library, and obtaining an initial action strategy in the current task scene, obtaining a target action strategy, and obtaining a final action strategy. According to the method, the problem of low interpretability of the action strategy caused by using the deep neural network to fit the action strategy is solved, and the task efficiency of the robot intelligent agent is improved. 本发明涉及机器人智能体技能学习领域,具体涉及一种基于案例推理的机器人智能体技能学习与泛化方法,包括:构建案例库,获取案例库中与当前任务场景下的机器人智能体的每个状态向量最相似的目标案例,获取当前任务场景下的初始动作策略,获取目标动作策略,获取最终动作策略。本方法克服了使用深度神经网络拟合动作策略带来的动作策略可解释性低的问题,提高了机器人智能体的任务效率。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231103&amp;DB=EPODOC&amp;CC=CN&amp;NR=116992964A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231103&amp;DB=EPODOC&amp;CC=CN&amp;NR=116992964A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HUANG PANFENG</creatorcontrib><creatorcontrib>LIU ZHENGXIONG</creatorcontrib><creatorcontrib>MA ZHIQIANG</creatorcontrib><creatorcontrib>CHANG HAITAO</creatorcontrib><creatorcontrib>WANG GAOZHAO</creatorcontrib><creatorcontrib>LIU XING</creatorcontrib><title>Robot agent skill learning and generalization method based on case reasoning</title><description>The invention relates to the field of robot agent skill learning, in particular to a case reasoning-based robot agent skill learning and generalization method, which comprises the following steps of: constructing a case library, acquiring a target case which is most similar to each state vector of a robot agent in a current task scene in the case library, and obtaining an initial action strategy in the current task scene, obtaining a target action strategy, and obtaining a final action strategy. According to the method, the problem of low interpretability of the action strategy caused by using the deep neural network to fit the action strategy is solved, and the task efficiency of the robot intelligent agent is improved. 本发明涉及机器人智能体技能学习领域,具体涉及一种基于案例推理的机器人智能体技能学习与泛化方法,包括:构建案例库,获取案例库中与当前任务场景下的机器人智能体的每个状态向量最相似的目标案例,获取当前任务场景下的初始动作策略,获取目标动作策略,获取最终动作策略。本方法克服了使用深度神经网络拟合动作策略带来的动作策略可解释性低的问题,提高了机器人智能体的任务效率。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAJyk_KL1FITE_NK1Eozs7MyVHISU0sysvMS1dIzEtRAIqnFiXmZFYllmTm5ynkppZk5KcoJCUWp6YoAPnJQIZCUWpicT5IBw8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSEwGmlYS7-xnaGhmaWlkaWbiaEyMGgCZBzXj</recordid><startdate>20231103</startdate><enddate>20231103</enddate><creator>HUANG PANFENG</creator><creator>LIU ZHENGXIONG</creator><creator>MA ZHIQIANG</creator><creator>CHANG HAITAO</creator><creator>WANG GAOZHAO</creator><creator>LIU XING</creator><scope>EVB</scope></search><sort><creationdate>20231103</creationdate><title>Robot agent skill learning and generalization method based on case reasoning</title><author>HUANG PANFENG ; LIU ZHENGXIONG ; MA ZHIQIANG ; CHANG HAITAO ; WANG GAOZHAO ; LIU XING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116992964A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HUANG PANFENG</creatorcontrib><creatorcontrib>LIU ZHENGXIONG</creatorcontrib><creatorcontrib>MA ZHIQIANG</creatorcontrib><creatorcontrib>CHANG HAITAO</creatorcontrib><creatorcontrib>WANG GAOZHAO</creatorcontrib><creatorcontrib>LIU XING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUANG PANFENG</au><au>LIU ZHENGXIONG</au><au>MA ZHIQIANG</au><au>CHANG HAITAO</au><au>WANG GAOZHAO</au><au>LIU XING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Robot agent skill learning and generalization method based on case reasoning</title><date>2023-11-03</date><risdate>2023</risdate><abstract>The invention relates to the field of robot agent skill learning, in particular to a case reasoning-based robot agent skill learning and generalization method, which comprises the following steps of: constructing a case library, acquiring a target case which is most similar to each state vector of a robot agent in a current task scene in the case library, and obtaining an initial action strategy in the current task scene, obtaining a target action strategy, and obtaining a final action strategy. According to the method, the problem of low interpretability of the action strategy caused by using the deep neural network to fit the action strategy is solved, and the task efficiency of the robot intelligent agent is improved. 本发明涉及机器人智能体技能学习领域,具体涉及一种基于案例推理的机器人智能体技能学习与泛化方法,包括:构建案例库,获取案例库中与当前任务场景下的机器人智能体的每个状态向量最相似的目标案例,获取当前任务场景下的初始动作策略,获取目标动作策略,获取最终动作策略。本方法克服了使用深度神经网络拟合动作策略带来的动作策略可解释性低的问题,提高了机器人智能体的任务效率。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116992964A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Robot agent skill learning and generalization method based on case reasoning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HUANG%20PANFENG&rft.date=2023-11-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116992964A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true