Rapid inversion method for logging-while-drilling information based on transfer learning

The invention discloses a transfer learning-based logging-while-drilling information rapid inversion method, which comprises the following steps of: constructing a logging-while-drilling azimuth electromagnetic wave logging forward model, and simulating logging-while-drilling response of a multi-com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GAO MUZHI, ZHU GAOYANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GAO MUZHI
ZHU GAOYANG
description The invention discloses a transfer learning-based logging-while-drilling information rapid inversion method, which comprises the following steps of: constructing a logging-while-drilling azimuth electromagnetic wave logging forward model, and simulating logging-while-drilling response of a multi-component logging-while-drilling electromagnetic wave logging instrument under different stratum parameter conditions by utilizing the logging-while-drilling azimuth electromagnetic wave logging forward model; the method comprises the following steps: constructing a logging-while-drilling response database, combining a convolutional neural network with an LSTM network to construct a logging-while-drilling azimuth electromagnetic wave logging information inversion model, training and optimizing logging-while-drilling response data in the logging-while-drilling response database to obtain a source domain network model, and constructing a target domain network model based on transfer learning. After the target domain net
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116992754A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116992754A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116992754A3</originalsourceid><addsrcrecordid>eNrjZIgISizITFHIzCtLLSrOzM9TyE0tychPUUjLL1LIyU9Pz8xL1y3PyMxJ1U0pyszJAXKBaoGSuYklINVJicWpKQpARklRYl5xWipQU2piUR5QGQ8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOzUstiXf2MzQ0s7Q0Mjc1cTQmRg0A6e068g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Rapid inversion method for logging-while-drilling information based on transfer learning</title><source>esp@cenet</source><creator>GAO MUZHI ; ZHU GAOYANG</creator><creatorcontrib>GAO MUZHI ; ZHU GAOYANG</creatorcontrib><description>The invention discloses a transfer learning-based logging-while-drilling information rapid inversion method, which comprises the following steps of: constructing a logging-while-drilling azimuth electromagnetic wave logging forward model, and simulating logging-while-drilling response of a multi-component logging-while-drilling electromagnetic wave logging instrument under different stratum parameter conditions by utilizing the logging-while-drilling azimuth electromagnetic wave logging forward model; the method comprises the following steps: constructing a logging-while-drilling response database, combining a convolutional neural network with an LSTM network to construct a logging-while-drilling azimuth electromagnetic wave logging information inversion model, training and optimizing logging-while-drilling response data in the logging-while-drilling response database to obtain a source domain network model, and constructing a target domain network model based on transfer learning. After the target domain net</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; EARTH DRILLING ; EARTH DRILLING, e.g. DEEP DRILLING ; ELECTRIC DIGITAL DATA PROCESSING ; FIXED CONSTRUCTIONS ; MINING ; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231103&amp;DB=EPODOC&amp;CC=CN&amp;NR=116992754A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231103&amp;DB=EPODOC&amp;CC=CN&amp;NR=116992754A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GAO MUZHI</creatorcontrib><creatorcontrib>ZHU GAOYANG</creatorcontrib><title>Rapid inversion method for logging-while-drilling information based on transfer learning</title><description>The invention discloses a transfer learning-based logging-while-drilling information rapid inversion method, which comprises the following steps of: constructing a logging-while-drilling azimuth electromagnetic wave logging forward model, and simulating logging-while-drilling response of a multi-component logging-while-drilling electromagnetic wave logging instrument under different stratum parameter conditions by utilizing the logging-while-drilling azimuth electromagnetic wave logging forward model; the method comprises the following steps: constructing a logging-while-drilling response database, combining a convolutional neural network with an LSTM network to construct a logging-while-drilling azimuth electromagnetic wave logging information inversion model, training and optimizing logging-while-drilling response data in the logging-while-drilling response database to obtain a source domain network model, and constructing a target domain network model based on transfer learning. After the target domain net</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>EARTH DRILLING</subject><subject>EARTH DRILLING, e.g. DEEP DRILLING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>FIXED CONSTRUCTIONS</subject><subject>MINING</subject><subject>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIgISizITFHIzCtLLSrOzM9TyE0tychPUUjLL1LIyU9Pz8xL1y3PyMxJ1U0pyszJAXKBaoGSuYklINVJicWpKQpARklRYl5xWipQU2piUR5QGQ8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOzUstiXf2MzQ0s7Q0Mjc1cTQmRg0A6e068g</recordid><startdate>20231103</startdate><enddate>20231103</enddate><creator>GAO MUZHI</creator><creator>ZHU GAOYANG</creator><scope>EVB</scope></search><sort><creationdate>20231103</creationdate><title>Rapid inversion method for logging-while-drilling information based on transfer learning</title><author>GAO MUZHI ; ZHU GAOYANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116992754A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>EARTH DRILLING</topic><topic>EARTH DRILLING, e.g. DEEP DRILLING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>FIXED CONSTRUCTIONS</topic><topic>MINING</topic><topic>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GAO MUZHI</creatorcontrib><creatorcontrib>ZHU GAOYANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GAO MUZHI</au><au>ZHU GAOYANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Rapid inversion method for logging-while-drilling information based on transfer learning</title><date>2023-11-03</date><risdate>2023</risdate><abstract>The invention discloses a transfer learning-based logging-while-drilling information rapid inversion method, which comprises the following steps of: constructing a logging-while-drilling azimuth electromagnetic wave logging forward model, and simulating logging-while-drilling response of a multi-component logging-while-drilling electromagnetic wave logging instrument under different stratum parameter conditions by utilizing the logging-while-drilling azimuth electromagnetic wave logging forward model; the method comprises the following steps: constructing a logging-while-drilling response database, combining a convolutional neural network with an LSTM network to construct a logging-while-drilling azimuth electromagnetic wave logging information inversion model, training and optimizing logging-while-drilling response data in the logging-while-drilling response database to obtain a source domain network model, and constructing a target domain network model based on transfer learning. After the target domain net</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116992754A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
EARTH DRILLING
EARTH DRILLING, e.g. DEEP DRILLING
ELECTRIC DIGITAL DATA PROCESSING
FIXED CONSTRUCTIONS
MINING
OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS
PHYSICS
title Rapid inversion method for logging-while-drilling information based on transfer learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GAO%20MUZHI&rft.date=2023-11-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116992754A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true