Road section emergency traffic situation influence assessment and analysis model and method

The invention discloses a model and a method for evaluating and analyzing traffic situation influence of road section emergencies, and the method comprises the steps: deducing related follow-up traffic road condition evolution situation based on a Bayesian network and other related mining algorithms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG LEI, ZHU JIE, NI WEI, ZHONG JUNKAI, WANG LINGJIAO, WAN XIAOYI, XIANG PENGCHENG, ZHANG HAIRONG, SUN RUIWEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG LEI
ZHU JIE
NI WEI
ZHONG JUNKAI
WANG LINGJIAO
WAN XIAOYI
XIANG PENGCHENG
ZHANG HAIRONG
SUN RUIWEI
description The invention discloses a model and a method for evaluating and analyzing traffic situation influence of road section emergencies, and the method comprises the steps: deducing related follow-up traffic road condition evolution situation based on a Bayesian network and other related mining algorithms; the method comprises the following steps: collecting vehicle and road condition information, traffic accident grade and other data in a period of time before and after a violation moment of a violation vehicle from a traffic vehicle management system database, sorting and classifying the collected information, establishing a training set training model of a Bayesian network evaluation model, and incorporating a prediction grade into a model training range; according to the method, the traffic violation misjudgment is identified, the traffic section situation is evaluated, the decision support capability is provided for improving the emergency disposal of expressway emergencies, and meanwhile, based on a Bayesian
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116978231A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116978231A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116978231A3</originalsourceid><addsrcrecordid>eNqNijsKwkAURaexEHUPzwVYjAE_pQTFykLsLMJj5k4cmE_ImxTZvSG4AIvLgXPuUr2fmS0JTPE5ESL6FsmMVHp2zhsSXwaem08uDFMDsQhEIlIhTnYah1G8UMwWYVYR5ZPtWi0cB8Hmx5Xa3q6v-r5DlxtIxwYJpakfWh_Ox9O-0pfqn88Xuo48Ag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Road section emergency traffic situation influence assessment and analysis model and method</title><source>esp@cenet</source><creator>WANG LEI ; ZHU JIE ; NI WEI ; ZHONG JUNKAI ; WANG LINGJIAO ; WAN XIAOYI ; XIANG PENGCHENG ; ZHANG HAIRONG ; SUN RUIWEI</creator><creatorcontrib>WANG LEI ; ZHU JIE ; NI WEI ; ZHONG JUNKAI ; WANG LINGJIAO ; WAN XIAOYI ; XIANG PENGCHENG ; ZHANG HAIRONG ; SUN RUIWEI</creatorcontrib><description>The invention discloses a model and a method for evaluating and analyzing traffic situation influence of road section emergencies, and the method comprises the steps: deducing related follow-up traffic road condition evolution situation based on a Bayesian network and other related mining algorithms; the method comprises the following steps: collecting vehicle and road condition information, traffic accident grade and other data in a period of time before and after a violation moment of a violation vehicle from a traffic vehicle management system database, sorting and classifying the collected information, establishing a training set training model of a Bayesian network evaluation model, and incorporating a prediction grade into a model training range; according to the method, the traffic violation misjudgment is identified, the traffic section situation is evaluated, the decision support capability is provided for improving the emergency disposal of expressway emergencies, and meanwhile, based on a Bayesian</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SIGNALLING ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TRAFFIC CONTROL SYSTEMS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231031&amp;DB=EPODOC&amp;CC=CN&amp;NR=116978231A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231031&amp;DB=EPODOC&amp;CC=CN&amp;NR=116978231A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG LEI</creatorcontrib><creatorcontrib>ZHU JIE</creatorcontrib><creatorcontrib>NI WEI</creatorcontrib><creatorcontrib>ZHONG JUNKAI</creatorcontrib><creatorcontrib>WANG LINGJIAO</creatorcontrib><creatorcontrib>WAN XIAOYI</creatorcontrib><creatorcontrib>XIANG PENGCHENG</creatorcontrib><creatorcontrib>ZHANG HAIRONG</creatorcontrib><creatorcontrib>SUN RUIWEI</creatorcontrib><title>Road section emergency traffic situation influence assessment and analysis model and method</title><description>The invention discloses a model and a method for evaluating and analyzing traffic situation influence of road section emergencies, and the method comprises the steps: deducing related follow-up traffic road condition evolution situation based on a Bayesian network and other related mining algorithms; the method comprises the following steps: collecting vehicle and road condition information, traffic accident grade and other data in a period of time before and after a violation moment of a violation vehicle from a traffic vehicle management system database, sorting and classifying the collected information, establishing a training set training model of a Bayesian network evaluation model, and incorporating a prediction grade into a model training range; according to the method, the traffic violation misjudgment is identified, the traffic section situation is evaluated, the decision support capability is provided for improving the emergency disposal of expressway emergencies, and meanwhile, based on a Bayesian</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijsKwkAURaexEHUPzwVYjAE_pQTFykLsLMJj5k4cmE_ImxTZvSG4AIvLgXPuUr2fmS0JTPE5ESL6FsmMVHp2zhsSXwaem08uDFMDsQhEIlIhTnYah1G8UMwWYVYR5ZPtWi0cB8Hmx5Xa3q6v-r5DlxtIxwYJpakfWh_Ox9O-0pfqn88Xuo48Ag</recordid><startdate>20231031</startdate><enddate>20231031</enddate><creator>WANG LEI</creator><creator>ZHU JIE</creator><creator>NI WEI</creator><creator>ZHONG JUNKAI</creator><creator>WANG LINGJIAO</creator><creator>WAN XIAOYI</creator><creator>XIANG PENGCHENG</creator><creator>ZHANG HAIRONG</creator><creator>SUN RUIWEI</creator><scope>EVB</scope></search><sort><creationdate>20231031</creationdate><title>Road section emergency traffic situation influence assessment and analysis model and method</title><author>WANG LEI ; ZHU JIE ; NI WEI ; ZHONG JUNKAI ; WANG LINGJIAO ; WAN XIAOYI ; XIANG PENGCHENG ; ZHANG HAIRONG ; SUN RUIWEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116978231A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG LEI</creatorcontrib><creatorcontrib>ZHU JIE</creatorcontrib><creatorcontrib>NI WEI</creatorcontrib><creatorcontrib>ZHONG JUNKAI</creatorcontrib><creatorcontrib>WANG LINGJIAO</creatorcontrib><creatorcontrib>WAN XIAOYI</creatorcontrib><creatorcontrib>XIANG PENGCHENG</creatorcontrib><creatorcontrib>ZHANG HAIRONG</creatorcontrib><creatorcontrib>SUN RUIWEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG LEI</au><au>ZHU JIE</au><au>NI WEI</au><au>ZHONG JUNKAI</au><au>WANG LINGJIAO</au><au>WAN XIAOYI</au><au>XIANG PENGCHENG</au><au>ZHANG HAIRONG</au><au>SUN RUIWEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Road section emergency traffic situation influence assessment and analysis model and method</title><date>2023-10-31</date><risdate>2023</risdate><abstract>The invention discloses a model and a method for evaluating and analyzing traffic situation influence of road section emergencies, and the method comprises the steps: deducing related follow-up traffic road condition evolution situation based on a Bayesian network and other related mining algorithms; the method comprises the following steps: collecting vehicle and road condition information, traffic accident grade and other data in a period of time before and after a violation moment of a violation vehicle from a traffic vehicle management system database, sorting and classifying the collected information, establishing a training set training model of a Bayesian network evaluation model, and incorporating a prediction grade into a model training range; according to the method, the traffic violation misjudgment is identified, the traffic section situation is evaluated, the decision support capability is provided for improving the emergency disposal of expressway emergencies, and meanwhile, based on a Bayesian</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116978231A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SIGNALLING
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
TRAFFIC CONTROL SYSTEMS
title Road section emergency traffic situation influence assessment and analysis model and method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20LEI&rft.date=2023-10-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116978231A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true