Neural network forecasting method for navigation satellite clock error data
The invention provides a neural network forecasting method for navigation satellite clock error data, and the method comprises the steps: building a short-term clock error forecasting model which combines an SSA (Sparrow Search Algorithm) with a BiLSTM (Bidirectional Long Short-Term Memory Neural Ne...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG SIYING PAN XIONG HUANG WEIKAI ZHAO WANZHUO ZHONG SAISHANG JIN LIHONG |
description | The invention provides a neural network forecasting method for navigation satellite clock error data, and the method comprises the steps: building a short-term clock error forecasting model which combines an SSA (Sparrow Search Algorithm) with a BiLSTM (Bidirectional Long Short-Term Memory Neural Network), carrying out the reverse extension of a neural network layer of the LSTM, building a BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, and carrying out the prediction of the clock error data of the navigation satellite. The SSA is combined to effectively solve the problem that neural network hyper-parameters obtained through human experience adjustment in the LSTM c |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116976393A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116976393A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116976393A3</originalsourceid><addsrcrecordid>eNrjZPD2Sy0tSsxRyEstKc8vylZIyy9KTU4sLsnMS1fITS3JyE8BCSnkJZZlpieWZObnKRQnlqTm5GSWpCok5-QnZyukFhUBFaQkliTyMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5FSgNfHOfoaGZpbmZsaWxo7GxKgBAKRUNgE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Neural network forecasting method for navigation satellite clock error data</title><source>esp@cenet</source><creator>ZHANG SIYING ; PAN XIONG ; HUANG WEIKAI ; ZHAO WANZHUO ; ZHONG SAISHANG ; JIN LIHONG</creator><creatorcontrib>ZHANG SIYING ; PAN XIONG ; HUANG WEIKAI ; ZHAO WANZHUO ; ZHONG SAISHANG ; JIN LIHONG</creatorcontrib><description>The invention provides a neural network forecasting method for navigation satellite clock error data, and the method comprises the steps: building a short-term clock error forecasting model which combines an SSA (Sparrow Search Algorithm) with a BiLSTM (Bidirectional Long Short-Term Memory Neural Network), carrying out the reverse extension of a neural network layer of the LSTM, building a BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, and carrying out the prediction of the clock error data of the navigation satellite. The SSA is combined to effectively solve the problem that neural network hyper-parameters obtained through human experience adjustment in the LSTM c</description><language>chi ; eng</language><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES ; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES ; MEASURING ; PHYSICS ; RADIO DIRECTION-FINDING ; RADIO NAVIGATION ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231031&DB=EPODOC&CC=CN&NR=116976393A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231031&DB=EPODOC&CC=CN&NR=116976393A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG SIYING</creatorcontrib><creatorcontrib>PAN XIONG</creatorcontrib><creatorcontrib>HUANG WEIKAI</creatorcontrib><creatorcontrib>ZHAO WANZHUO</creatorcontrib><creatorcontrib>ZHONG SAISHANG</creatorcontrib><creatorcontrib>JIN LIHONG</creatorcontrib><title>Neural network forecasting method for navigation satellite clock error data</title><description>The invention provides a neural network forecasting method for navigation satellite clock error data, and the method comprises the steps: building a short-term clock error forecasting model which combines an SSA (Sparrow Search Algorithm) with a BiLSTM (Bidirectional Long Short-Term Memory Neural Network), carrying out the reverse extension of a neural network layer of the LSTM, building a BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, and carrying out the prediction of the clock error data of the navigation satellite. The SSA is combined to effectively solve the problem that neural network hyper-parameters obtained through human experience adjustment in the LSTM c</description><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</subject><subject>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>RADIO DIRECTION-FINDING</subject><subject>RADIO NAVIGATION</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD2Sy0tSsxRyEstKc8vylZIyy9KTU4sLsnMS1fITS3JyE8BCSnkJZZlpieWZObnKRQnlqTm5GSWpCok5-QnZyukFhUBFaQkliTyMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5FSgNfHOfoaGZpbmZsaWxo7GxKgBAKRUNgE</recordid><startdate>20231031</startdate><enddate>20231031</enddate><creator>ZHANG SIYING</creator><creator>PAN XIONG</creator><creator>HUANG WEIKAI</creator><creator>ZHAO WANZHUO</creator><creator>ZHONG SAISHANG</creator><creator>JIN LIHONG</creator><scope>EVB</scope></search><sort><creationdate>20231031</creationdate><title>Neural network forecasting method for navigation satellite clock error data</title><author>ZHANG SIYING ; PAN XIONG ; HUANG WEIKAI ; ZHAO WANZHUO ; ZHONG SAISHANG ; JIN LIHONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116976393A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</topic><topic>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>RADIO DIRECTION-FINDING</topic><topic>RADIO NAVIGATION</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG SIYING</creatorcontrib><creatorcontrib>PAN XIONG</creatorcontrib><creatorcontrib>HUANG WEIKAI</creatorcontrib><creatorcontrib>ZHAO WANZHUO</creatorcontrib><creatorcontrib>ZHONG SAISHANG</creatorcontrib><creatorcontrib>JIN LIHONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG SIYING</au><au>PAN XIONG</au><au>HUANG WEIKAI</au><au>ZHAO WANZHUO</au><au>ZHONG SAISHANG</au><au>JIN LIHONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Neural network forecasting method for navigation satellite clock error data</title><date>2023-10-31</date><risdate>2023</risdate><abstract>The invention provides a neural network forecasting method for navigation satellite clock error data, and the method comprises the steps: building a short-term clock error forecasting model which combines an SSA (Sparrow Search Algorithm) with a BiLSTM (Bidirectional Long Short-Term Memory Neural Network), carrying out the reverse extension of a neural network layer of the LSTM, building a BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, and carrying out the prediction of the clock error data of the navigation satellite. The SSA is combined to effectively solve the problem that neural network hyper-parameters obtained through human experience adjustment in the LSTM c</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116976393A |
source | esp@cenet |
subjects | ANALOGOUS ARRANGEMENTS USING OTHER WAVES CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES MEASURING PHYSICS RADIO DIRECTION-FINDING RADIO NAVIGATION TESTING |
title | Neural network forecasting method for navigation satellite clock error data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20SIYING&rft.date=2023-10-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116976393A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |