Neural network forecasting method for navigation satellite clock error data

The invention provides a neural network forecasting method for navigation satellite clock error data, and the method comprises the steps: building a short-term clock error forecasting model which combines an SSA (Sparrow Search Algorithm) with a BiLSTM (Bidirectional Long Short-Term Memory Neural Ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG SIYING, PAN XIONG, HUANG WEIKAI, ZHAO WANZHUO, ZHONG SAISHANG, JIN LIHONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG SIYING
PAN XIONG
HUANG WEIKAI
ZHAO WANZHUO
ZHONG SAISHANG
JIN LIHONG
description The invention provides a neural network forecasting method for navigation satellite clock error data, and the method comprises the steps: building a short-term clock error forecasting model which combines an SSA (Sparrow Search Algorithm) with a BiLSTM (Bidirectional Long Short-Term Memory Neural Network), carrying out the reverse extension of a neural network layer of the LSTM, building a BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, and carrying out the prediction of the clock error data of the navigation satellite. The SSA is combined to effectively solve the problem that neural network hyper-parameters obtained through human experience adjustment in the LSTM c
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116976393A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116976393A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116976393A3</originalsourceid><addsrcrecordid>eNrjZPD2Sy0tSsxRyEstKc8vylZIyy9KTU4sLsnMS1fITS3JyE8BCSnkJZZlpieWZObnKRQnlqTm5GSWpCok5-QnZyukFhUBFaQkliTyMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5FSgNfHOfoaGZpbmZsaWxo7GxKgBAKRUNgE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Neural network forecasting method for navigation satellite clock error data</title><source>esp@cenet</source><creator>ZHANG SIYING ; PAN XIONG ; HUANG WEIKAI ; ZHAO WANZHUO ; ZHONG SAISHANG ; JIN LIHONG</creator><creatorcontrib>ZHANG SIYING ; PAN XIONG ; HUANG WEIKAI ; ZHAO WANZHUO ; ZHONG SAISHANG ; JIN LIHONG</creatorcontrib><description>The invention provides a neural network forecasting method for navigation satellite clock error data, and the method comprises the steps: building a short-term clock error forecasting model which combines an SSA (Sparrow Search Algorithm) with a BiLSTM (Bidirectional Long Short-Term Memory Neural Network), carrying out the reverse extension of a neural network layer of the LSTM, building a BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, and carrying out the prediction of the clock error data of the navigation satellite. The SSA is combined to effectively solve the problem that neural network hyper-parameters obtained through human experience adjustment in the LSTM c</description><language>chi ; eng</language><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES ; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES ; MEASURING ; PHYSICS ; RADIO DIRECTION-FINDING ; RADIO NAVIGATION ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231031&amp;DB=EPODOC&amp;CC=CN&amp;NR=116976393A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231031&amp;DB=EPODOC&amp;CC=CN&amp;NR=116976393A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG SIYING</creatorcontrib><creatorcontrib>PAN XIONG</creatorcontrib><creatorcontrib>HUANG WEIKAI</creatorcontrib><creatorcontrib>ZHAO WANZHUO</creatorcontrib><creatorcontrib>ZHONG SAISHANG</creatorcontrib><creatorcontrib>JIN LIHONG</creatorcontrib><title>Neural network forecasting method for navigation satellite clock error data</title><description>The invention provides a neural network forecasting method for navigation satellite clock error data, and the method comprises the steps: building a short-term clock error forecasting model which combines an SSA (Sparrow Search Algorithm) with a BiLSTM (Bidirectional Long Short-Term Memory Neural Network), carrying out the reverse extension of a neural network layer of the LSTM, building a BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, and carrying out the prediction of the clock error data of the navigation satellite. The SSA is combined to effectively solve the problem that neural network hyper-parameters obtained through human experience adjustment in the LSTM c</description><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</subject><subject>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>RADIO DIRECTION-FINDING</subject><subject>RADIO NAVIGATION</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD2Sy0tSsxRyEstKc8vylZIyy9KTU4sLsnMS1fITS3JyE8BCSnkJZZlpieWZObnKRQnlqTm5GSWpCok5-QnZyukFhUBFaQkliTyMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5FSgNfHOfoaGZpbmZsaWxo7GxKgBAKRUNgE</recordid><startdate>20231031</startdate><enddate>20231031</enddate><creator>ZHANG SIYING</creator><creator>PAN XIONG</creator><creator>HUANG WEIKAI</creator><creator>ZHAO WANZHUO</creator><creator>ZHONG SAISHANG</creator><creator>JIN LIHONG</creator><scope>EVB</scope></search><sort><creationdate>20231031</creationdate><title>Neural network forecasting method for navigation satellite clock error data</title><author>ZHANG SIYING ; PAN XIONG ; HUANG WEIKAI ; ZHAO WANZHUO ; ZHONG SAISHANG ; JIN LIHONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116976393A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</topic><topic>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>RADIO DIRECTION-FINDING</topic><topic>RADIO NAVIGATION</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG SIYING</creatorcontrib><creatorcontrib>PAN XIONG</creatorcontrib><creatorcontrib>HUANG WEIKAI</creatorcontrib><creatorcontrib>ZHAO WANZHUO</creatorcontrib><creatorcontrib>ZHONG SAISHANG</creatorcontrib><creatorcontrib>JIN LIHONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG SIYING</au><au>PAN XIONG</au><au>HUANG WEIKAI</au><au>ZHAO WANZHUO</au><au>ZHONG SAISHANG</au><au>JIN LIHONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Neural network forecasting method for navigation satellite clock error data</title><date>2023-10-31</date><risdate>2023</risdate><abstract>The invention provides a neural network forecasting method for navigation satellite clock error data, and the method comprises the steps: building a short-term clock error forecasting model which combines an SSA (Sparrow Search Algorithm) with a BiLSTM (Bidirectional Long Short-Term Memory Neural Network), carrying out the reverse extension of a neural network layer of the LSTM, building a BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, carrying out the reverse extension of the neural network layer of the BiLSTM, and carrying out the prediction of the clock error data of the navigation satellite. The SSA is combined to effectively solve the problem that neural network hyper-parameters obtained through human experience adjustment in the LSTM c</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116976393A
source esp@cenet
subjects ANALOGOUS ARRANGEMENTS USING OTHER WAVES
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES
LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES
MEASURING
PHYSICS
RADIO DIRECTION-FINDING
RADIO NAVIGATION
TESTING
title Neural network forecasting method for navigation satellite clock error data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20SIYING&rft.date=2023-10-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116976393A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true