Random coefficient regression model residual life prediction method considering dependency time error

The invention discloses a random coefficient regression model residual life prediction method considering a dependency time error. The method comprises the following steps: A, establishing a high-reliability equipment performance degradation model under the condition that an error variance is reduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SUN XIAOYAN, XIAO JUNLING, SI XIAOSHENG, TIAN GAN, FANG PENGYA, TANG SHENGJIN, XU ZHIGAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SUN XIAOYAN
XIAO JUNLING
SI XIAOSHENG
TIAN GAN
FANG PENGYA
TANG SHENGJIN
XU ZHIGAO
description The invention discloses a random coefficient regression model residual life prediction method considering a dependency time error. The method comprises the following steps: A, establishing a high-reliability equipment performance degradation model under the condition that an error variance is reduced along with time; b, performing off-line unbiased estimation on prior parameters of the model; c, on-line updating the random coefficient based on the Bayesian theory; and D, predicting the residual life of the equipment. The invention provides the residual life prediction method of the random coefficient regression model considering the dependency time error, which not only can carry out fitting analysis on the performance degradation characteristic of the measurement uncertainty of the high-reliability equipment along with the reduction of time, but also can effectively predict the residual life of the equipment. Theoretical basis and technical support are provided for condition-based maintenance and decision ma
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116956707A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116956707A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116956707A3</originalsourceid><addsrcrecordid>eNqNi0EKwjAQRbtxIeodxgMIFrHFpRTFlQtxX0Ly0w6kMyGJC29vEQ_g6sN77y8rPIw4ncgqvGfLkEIJQ0LOrEKTOoQZZHYvEyiwB8UEx7Z8Ncqobj7LHCCxDOQQIQ5i31R4AiElTetq4U3I2Px2VW2vl2d32yFqjxyNhaD03b2um9Oxafft-fBP8wGjuUAq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Random coefficient regression model residual life prediction method considering dependency time error</title><source>esp@cenet</source><creator>SUN XIAOYAN ; XIAO JUNLING ; SI XIAOSHENG ; TIAN GAN ; FANG PENGYA ; TANG SHENGJIN ; XU ZHIGAO</creator><creatorcontrib>SUN XIAOYAN ; XIAO JUNLING ; SI XIAOSHENG ; TIAN GAN ; FANG PENGYA ; TANG SHENGJIN ; XU ZHIGAO</creatorcontrib><description>The invention discloses a random coefficient regression model residual life prediction method considering a dependency time error. The method comprises the following steps: A, establishing a high-reliability equipment performance degradation model under the condition that an error variance is reduced along with time; b, performing off-line unbiased estimation on prior parameters of the model; c, on-line updating the random coefficient based on the Bayesian theory; and D, predicting the residual life of the equipment. The invention provides the residual life prediction method of the random coefficient regression model considering the dependency time error, which not only can carry out fitting analysis on the performance degradation characteristic of the measurement uncertainty of the high-reliability equipment along with the reduction of time, but also can effectively predict the residual life of the equipment. Theoretical basis and technical support are provided for condition-based maintenance and decision ma</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231027&amp;DB=EPODOC&amp;CC=CN&amp;NR=116956707A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231027&amp;DB=EPODOC&amp;CC=CN&amp;NR=116956707A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUN XIAOYAN</creatorcontrib><creatorcontrib>XIAO JUNLING</creatorcontrib><creatorcontrib>SI XIAOSHENG</creatorcontrib><creatorcontrib>TIAN GAN</creatorcontrib><creatorcontrib>FANG PENGYA</creatorcontrib><creatorcontrib>TANG SHENGJIN</creatorcontrib><creatorcontrib>XU ZHIGAO</creatorcontrib><title>Random coefficient regression model residual life prediction method considering dependency time error</title><description>The invention discloses a random coefficient regression model residual life prediction method considering a dependency time error. The method comprises the following steps: A, establishing a high-reliability equipment performance degradation model under the condition that an error variance is reduced along with time; b, performing off-line unbiased estimation on prior parameters of the model; c, on-line updating the random coefficient based on the Bayesian theory; and D, predicting the residual life of the equipment. The invention provides the residual life prediction method of the random coefficient regression model considering the dependency time error, which not only can carry out fitting analysis on the performance degradation characteristic of the measurement uncertainty of the high-reliability equipment along with the reduction of time, but also can effectively predict the residual life of the equipment. Theoretical basis and technical support are provided for condition-based maintenance and decision ma</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAQRbtxIeodxgMIFrHFpRTFlQtxX0Ly0w6kMyGJC29vEQ_g6sN77y8rPIw4ncgqvGfLkEIJQ0LOrEKTOoQZZHYvEyiwB8UEx7Z8Ncqobj7LHCCxDOQQIQ5i31R4AiElTetq4U3I2Px2VW2vl2d32yFqjxyNhaD03b2um9Oxafft-fBP8wGjuUAq</recordid><startdate>20231027</startdate><enddate>20231027</enddate><creator>SUN XIAOYAN</creator><creator>XIAO JUNLING</creator><creator>SI XIAOSHENG</creator><creator>TIAN GAN</creator><creator>FANG PENGYA</creator><creator>TANG SHENGJIN</creator><creator>XU ZHIGAO</creator><scope>EVB</scope></search><sort><creationdate>20231027</creationdate><title>Random coefficient regression model residual life prediction method considering dependency time error</title><author>SUN XIAOYAN ; XIAO JUNLING ; SI XIAOSHENG ; TIAN GAN ; FANG PENGYA ; TANG SHENGJIN ; XU ZHIGAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116956707A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SUN XIAOYAN</creatorcontrib><creatorcontrib>XIAO JUNLING</creatorcontrib><creatorcontrib>SI XIAOSHENG</creatorcontrib><creatorcontrib>TIAN GAN</creatorcontrib><creatorcontrib>FANG PENGYA</creatorcontrib><creatorcontrib>TANG SHENGJIN</creatorcontrib><creatorcontrib>XU ZHIGAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUN XIAOYAN</au><au>XIAO JUNLING</au><au>SI XIAOSHENG</au><au>TIAN GAN</au><au>FANG PENGYA</au><au>TANG SHENGJIN</au><au>XU ZHIGAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Random coefficient regression model residual life prediction method considering dependency time error</title><date>2023-10-27</date><risdate>2023</risdate><abstract>The invention discloses a random coefficient regression model residual life prediction method considering a dependency time error. The method comprises the following steps: A, establishing a high-reliability equipment performance degradation model under the condition that an error variance is reduced along with time; b, performing off-line unbiased estimation on prior parameters of the model; c, on-line updating the random coefficient based on the Bayesian theory; and D, predicting the residual life of the equipment. The invention provides the residual life prediction method of the random coefficient regression model considering the dependency time error, which not only can carry out fitting analysis on the performance degradation characteristic of the measurement uncertainty of the high-reliability equipment along with the reduction of time, but also can effectively predict the residual life of the equipment. Theoretical basis and technical support are provided for condition-based maintenance and decision ma</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116956707A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Random coefficient regression model residual life prediction method considering dependency time error
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUN%20XIAOYAN&rft.date=2023-10-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116956707A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true