Submarine pipeline steel hydrogen-induced fatigue crack propagation circulation cohesion model prediction method

The invention discloses a subsea pipeline steel hydrogen-induced fatigue crack propagation cyclic cohesion model prediction method, which adopts finite element model processing, and after cyclic stress is loaded on a finite element model, the processing process comprises the following steps: carryin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHENG TINGSEN, CHEN NIANZHONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHENG TINGSEN
CHEN NIANZHONG
description The invention discloses a subsea pipeline steel hydrogen-induced fatigue crack propagation cyclic cohesion model prediction method, which adopts finite element model processing, and after cyclic stress is loaded on a finite element model, the processing process comprises the following steps: carrying out elastic-plastic analysis on a crack tip area in the finite element model of a test piece through a finite element analysis method; performing hydrogen diffusion analysis on the material; performing hydrogen-induced material performance degradation analysis on the material; performing cohesion analysis by using a cyclic cohesion model to obtain a damage index of a cohesion unit under the current time step, if the damage index is greater than 1, deleting the corresponding cohesion unit, enabling the crack to expand forwards and updating boundary conditions, and otherwise, entering a next time increment to return finite element analysis; and extracting the crack length and the cyclic stress cycle index under eac
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116933580A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116933580A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116933580A3</originalsourceid><addsrcrecordid>eNqNjLsKwkAURNNYiPoP6wcEDEHRUoJiZaN9WO9OksV9XPZR-Pcmkg-wmsOcYZYFP_LLyqAdBGuGmSAmwIjho4Lv4UrtVCYo0cmk-wxBQdJbcPAs-7HyTpAOlM3MfkCcwHo1vnCA0vQzFmnwal0sOmkiNnOuiu318mxuJdi3iCwJDqlt7lV1ONX1_rg71_9svvoyRIY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Submarine pipeline steel hydrogen-induced fatigue crack propagation circulation cohesion model prediction method</title><source>esp@cenet</source><creator>ZHENG TINGSEN ; CHEN NIANZHONG</creator><creatorcontrib>ZHENG TINGSEN ; CHEN NIANZHONG</creatorcontrib><description>The invention discloses a subsea pipeline steel hydrogen-induced fatigue crack propagation cyclic cohesion model prediction method, which adopts finite element model processing, and after cyclic stress is loaded on a finite element model, the processing process comprises the following steps: carrying out elastic-plastic analysis on a crack tip area in the finite element model of a test piece through a finite element analysis method; performing hydrogen diffusion analysis on the material; performing hydrogen-induced material performance degradation analysis on the material; performing cohesion analysis by using a cyclic cohesion model to obtain a damage index of a cohesion unit under the current time step, if the damage index is greater than 1, deleting the corresponding cohesion unit, enabling the crack to expand forwards and updating boundary conditions, and otherwise, entering a next time increment to return finite element analysis; and extracting the crack length and the cyclic stress cycle index under eac</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231024&amp;DB=EPODOC&amp;CC=CN&amp;NR=116933580A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231024&amp;DB=EPODOC&amp;CC=CN&amp;NR=116933580A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHENG TINGSEN</creatorcontrib><creatorcontrib>CHEN NIANZHONG</creatorcontrib><title>Submarine pipeline steel hydrogen-induced fatigue crack propagation circulation cohesion model prediction method</title><description>The invention discloses a subsea pipeline steel hydrogen-induced fatigue crack propagation cyclic cohesion model prediction method, which adopts finite element model processing, and after cyclic stress is loaded on a finite element model, the processing process comprises the following steps: carrying out elastic-plastic analysis on a crack tip area in the finite element model of a test piece through a finite element analysis method; performing hydrogen diffusion analysis on the material; performing hydrogen-induced material performance degradation analysis on the material; performing cohesion analysis by using a cyclic cohesion model to obtain a damage index of a cohesion unit under the current time step, if the damage index is greater than 1, deleting the corresponding cohesion unit, enabling the crack to expand forwards and updating boundary conditions, and otherwise, entering a next time increment to return finite element analysis; and extracting the crack length and the cyclic stress cycle index under eac</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLsKwkAURNNYiPoP6wcEDEHRUoJiZaN9WO9OksV9XPZR-Pcmkg-wmsOcYZYFP_LLyqAdBGuGmSAmwIjho4Lv4UrtVCYo0cmk-wxBQdJbcPAs-7HyTpAOlM3MfkCcwHo1vnCA0vQzFmnwal0sOmkiNnOuiu318mxuJdi3iCwJDqlt7lV1ONX1_rg71_9svvoyRIY</recordid><startdate>20231024</startdate><enddate>20231024</enddate><creator>ZHENG TINGSEN</creator><creator>CHEN NIANZHONG</creator><scope>EVB</scope></search><sort><creationdate>20231024</creationdate><title>Submarine pipeline steel hydrogen-induced fatigue crack propagation circulation cohesion model prediction method</title><author>ZHENG TINGSEN ; CHEN NIANZHONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116933580A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHENG TINGSEN</creatorcontrib><creatorcontrib>CHEN NIANZHONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHENG TINGSEN</au><au>CHEN NIANZHONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Submarine pipeline steel hydrogen-induced fatigue crack propagation circulation cohesion model prediction method</title><date>2023-10-24</date><risdate>2023</risdate><abstract>The invention discloses a subsea pipeline steel hydrogen-induced fatigue crack propagation cyclic cohesion model prediction method, which adopts finite element model processing, and after cyclic stress is loaded on a finite element model, the processing process comprises the following steps: carrying out elastic-plastic analysis on a crack tip area in the finite element model of a test piece through a finite element analysis method; performing hydrogen diffusion analysis on the material; performing hydrogen-induced material performance degradation analysis on the material; performing cohesion analysis by using a cyclic cohesion model to obtain a damage index of a cohesion unit under the current time step, if the damage index is greater than 1, deleting the corresponding cohesion unit, enabling the crack to expand forwards and updating boundary conditions, and otherwise, entering a next time increment to return finite element analysis; and extracting the crack length and the cyclic stress cycle index under eac</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116933580A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Submarine pipeline steel hydrogen-induced fatigue crack propagation circulation cohesion model prediction method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHENG%20TINGSEN&rft.date=2023-10-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116933580A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true