Typical operation risk monitoring method for transformer substation based on twin network target tracking

The invention relates to a transformer substation typical operation risk monitoring method based on twin network target tracking. The method comprises the following steps: step 1, constructing a twin network SiamFC based on a full convolutional neural network; 2, constructing a single-person attitud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU BIN, SU CHANGBAO, ZHANG PENGFEI, SU MINGFANG, ZHANG ZEZHONG, YAO NAN, CHANG DON, NIU DONG, REN KEYU, MA HONGJUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU BIN
SU CHANGBAO
ZHANG PENGFEI
SU MINGFANG
ZHANG ZEZHONG
YAO NAN
CHANG DON
NIU DONG
REN KEYU
MA HONGJUN
description The invention relates to a transformer substation typical operation risk monitoring method based on twin network target tracking. The method comprises the following steps: step 1, constructing a twin network SiamFC based on a full convolutional neural network; 2, constructing a single-person attitude tracker based on a twin network; 3, adopting a body posture estimation and tracking algorithm based on a twin network; 4, introducing a region candidate network to achieve the purpose of multi-scale detection; 5, detecting key point positions of the human body by adopting a posture estimation branch while tracking; 6, a single-person posture tracking task is completed; the method has the advantages that the template matching class tracking algorithm is adopted, the convolutional neural network is adopted to extract features, the feature maps are fused through cross correlation, and the similarity discrimination model is adopted. 本发明涉及基于孪生网络目标跟踪的变电站典型作业风险监测方法,所述的方法包括以下步骤:步骤1:构建基于全卷积神经网络的孪生网络SiamFC;步骤2:构建基于孪生网络的单人姿
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116912287A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116912287A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116912287A3</originalsourceid><addsrcrecordid>eNqNjD0OgkAQRmksjHqH8QAWYOJPaYjGyoqeDDDABNjZzI4h3t41egCr7xXfe8uEi5fnGkcQT4rG4kA5DDCJYxNl18FE1ksDrSiYogsRJlIIzyrY16gwUAMRbGYHjmwWHcBQO7KPUw-xs04WLY6BNr9dJdvbtcjvO_JSUvBYUzTL_JGmh3OaZafjZf_P5w33NEHp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Typical operation risk monitoring method for transformer substation based on twin network target tracking</title><source>esp@cenet</source><creator>LIU BIN ; SU CHANGBAO ; ZHANG PENGFEI ; SU MINGFANG ; ZHANG ZEZHONG ; YAO NAN ; CHANG DON ; NIU DONG ; REN KEYU ; MA HONGJUN</creator><creatorcontrib>LIU BIN ; SU CHANGBAO ; ZHANG PENGFEI ; SU MINGFANG ; ZHANG ZEZHONG ; YAO NAN ; CHANG DON ; NIU DONG ; REN KEYU ; MA HONGJUN</creatorcontrib><description>The invention relates to a transformer substation typical operation risk monitoring method based on twin network target tracking. The method comprises the following steps: step 1, constructing a twin network SiamFC based on a full convolutional neural network; 2, constructing a single-person attitude tracker based on a twin network; 3, adopting a body posture estimation and tracking algorithm based on a twin network; 4, introducing a region candidate network to achieve the purpose of multi-scale detection; 5, detecting key point positions of the human body by adopting a posture estimation branch while tracking; 6, a single-person posture tracking task is completed; the method has the advantages that the template matching class tracking algorithm is adopted, the convolutional neural network is adopted to extract features, the feature maps are fused through cross correlation, and the similarity discrimination model is adopted. 本发明涉及基于孪生网络目标跟踪的变电站典型作业风险监测方法,所述的方法包括以下步骤:步骤1:构建基于全卷积神经网络的孪生网络SiamFC;步骤2:构建基于孪生网络的单人姿</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231020&amp;DB=EPODOC&amp;CC=CN&amp;NR=116912287A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231020&amp;DB=EPODOC&amp;CC=CN&amp;NR=116912287A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU BIN</creatorcontrib><creatorcontrib>SU CHANGBAO</creatorcontrib><creatorcontrib>ZHANG PENGFEI</creatorcontrib><creatorcontrib>SU MINGFANG</creatorcontrib><creatorcontrib>ZHANG ZEZHONG</creatorcontrib><creatorcontrib>YAO NAN</creatorcontrib><creatorcontrib>CHANG DON</creatorcontrib><creatorcontrib>NIU DONG</creatorcontrib><creatorcontrib>REN KEYU</creatorcontrib><creatorcontrib>MA HONGJUN</creatorcontrib><title>Typical operation risk monitoring method for transformer substation based on twin network target tracking</title><description>The invention relates to a transformer substation typical operation risk monitoring method based on twin network target tracking. The method comprises the following steps: step 1, constructing a twin network SiamFC based on a full convolutional neural network; 2, constructing a single-person attitude tracker based on a twin network; 3, adopting a body posture estimation and tracking algorithm based on a twin network; 4, introducing a region candidate network to achieve the purpose of multi-scale detection; 5, detecting key point positions of the human body by adopting a posture estimation branch while tracking; 6, a single-person posture tracking task is completed; the method has the advantages that the template matching class tracking algorithm is adopted, the convolutional neural network is adopted to extract features, the feature maps are fused through cross correlation, and the similarity discrimination model is adopted. 本发明涉及基于孪生网络目标跟踪的变电站典型作业风险监测方法,所述的方法包括以下步骤:步骤1:构建基于全卷积神经网络的孪生网络SiamFC;步骤2:构建基于孪生网络的单人姿</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjD0OgkAQRmksjHqH8QAWYOJPaYjGyoqeDDDABNjZzI4h3t41egCr7xXfe8uEi5fnGkcQT4rG4kA5DDCJYxNl18FE1ksDrSiYogsRJlIIzyrY16gwUAMRbGYHjmwWHcBQO7KPUw-xs04WLY6BNr9dJdvbtcjvO_JSUvBYUzTL_JGmh3OaZafjZf_P5w33NEHp</recordid><startdate>20231020</startdate><enddate>20231020</enddate><creator>LIU BIN</creator><creator>SU CHANGBAO</creator><creator>ZHANG PENGFEI</creator><creator>SU MINGFANG</creator><creator>ZHANG ZEZHONG</creator><creator>YAO NAN</creator><creator>CHANG DON</creator><creator>NIU DONG</creator><creator>REN KEYU</creator><creator>MA HONGJUN</creator><scope>EVB</scope></search><sort><creationdate>20231020</creationdate><title>Typical operation risk monitoring method for transformer substation based on twin network target tracking</title><author>LIU BIN ; SU CHANGBAO ; ZHANG PENGFEI ; SU MINGFANG ; ZHANG ZEZHONG ; YAO NAN ; CHANG DON ; NIU DONG ; REN KEYU ; MA HONGJUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116912287A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU BIN</creatorcontrib><creatorcontrib>SU CHANGBAO</creatorcontrib><creatorcontrib>ZHANG PENGFEI</creatorcontrib><creatorcontrib>SU MINGFANG</creatorcontrib><creatorcontrib>ZHANG ZEZHONG</creatorcontrib><creatorcontrib>YAO NAN</creatorcontrib><creatorcontrib>CHANG DON</creatorcontrib><creatorcontrib>NIU DONG</creatorcontrib><creatorcontrib>REN KEYU</creatorcontrib><creatorcontrib>MA HONGJUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU BIN</au><au>SU CHANGBAO</au><au>ZHANG PENGFEI</au><au>SU MINGFANG</au><au>ZHANG ZEZHONG</au><au>YAO NAN</au><au>CHANG DON</au><au>NIU DONG</au><au>REN KEYU</au><au>MA HONGJUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Typical operation risk monitoring method for transformer substation based on twin network target tracking</title><date>2023-10-20</date><risdate>2023</risdate><abstract>The invention relates to a transformer substation typical operation risk monitoring method based on twin network target tracking. The method comprises the following steps: step 1, constructing a twin network SiamFC based on a full convolutional neural network; 2, constructing a single-person attitude tracker based on a twin network; 3, adopting a body posture estimation and tracking algorithm based on a twin network; 4, introducing a region candidate network to achieve the purpose of multi-scale detection; 5, detecting key point positions of the human body by adopting a posture estimation branch while tracking; 6, a single-person posture tracking task is completed; the method has the advantages that the template matching class tracking algorithm is adopted, the convolutional neural network is adopted to extract features, the feature maps are fused through cross correlation, and the similarity discrimination model is adopted. 本发明涉及基于孪生网络目标跟踪的变电站典型作业风险监测方法,所述的方法包括以下步骤:步骤1:构建基于全卷积神经网络的孪生网络SiamFC;步骤2:构建基于孪生网络的单人姿</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116912287A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Typical operation risk monitoring method for transformer substation based on twin network target tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20BIN&rft.date=2023-10-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116912287A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true