System downtime intelligent prediction method, device and equipment and readable storage medium

The invention discloses a system downtime intelligent prediction method, device and equipment and a readable storage medium, and the method comprises the steps: inputting a first feature vector corresponding to real-time log information into an anomaly detection model, obtaining a detection result,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN JIANFEI, ZHANG QINGYUN, YE XIAOLONG, JIANG TONGTONG, WENG LEYI, CHEN QINGQING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN JIANFEI
ZHANG QINGYUN
YE XIAOLONG
JIANG TONGTONG
WENG LEYI
CHEN QINGQING
description The invention discloses a system downtime intelligent prediction method, device and equipment and a readable storage medium, and the method comprises the steps: inputting a first feature vector corresponding to real-time log information into an anomaly detection model, obtaining a detection result, and determining real-time abnormal log information based on the detection result; the anomaly detection model comprises an isolated forest model and a density clustering model, and output information of the isolated forest model is input information of the density clustering model; and predicting the time and probability of system downtime based on the real-time abnormal log information. According to the method, the real-time abnormal log information is generated through the abnormal detection model, the time and probability of system downtime are predicted through the real-time abnormal log information, operation and maintenance personnel maintain the system according to the prediction result, and the stability of
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116909827A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116909827A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116909827A3</originalsourceid><addsrcrecordid>eNqNi70KwkAQBtNYiPoOa69gFNSUEhQrG-3Dmf2MC_dnbqP49hrwAayGgZlhVp3fSeGIw8urOJB4hbXSwCvFFiy1SvDkoPfAM2I8pQYZz4RHJ9H1XW8tDJurBSUNrWnwPVg6N84GN2MTJj-OsulhfymPc8RQIUVTw0Or8pTn62JRbJeb3eqf5gPRYD15</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System downtime intelligent prediction method, device and equipment and readable storage medium</title><source>esp@cenet</source><creator>CHEN JIANFEI ; ZHANG QINGYUN ; YE XIAOLONG ; JIANG TONGTONG ; WENG LEYI ; CHEN QINGQING</creator><creatorcontrib>CHEN JIANFEI ; ZHANG QINGYUN ; YE XIAOLONG ; JIANG TONGTONG ; WENG LEYI ; CHEN QINGQING</creatorcontrib><description>The invention discloses a system downtime intelligent prediction method, device and equipment and a readable storage medium, and the method comprises the steps: inputting a first feature vector corresponding to real-time log information into an anomaly detection model, obtaining a detection result, and determining real-time abnormal log information based on the detection result; the anomaly detection model comprises an isolated forest model and a density clustering model, and output information of the isolated forest model is input information of the density clustering model; and predicting the time and probability of system downtime based on the real-time abnormal log information. According to the method, the real-time abnormal log information is generated through the abnormal detection model, the time and probability of system downtime are predicted through the real-time abnormal log information, operation and maintenance personnel maintain the system according to the prediction result, and the stability of</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231020&amp;DB=EPODOC&amp;CC=CN&amp;NR=116909827A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25551,76302</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231020&amp;DB=EPODOC&amp;CC=CN&amp;NR=116909827A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN JIANFEI</creatorcontrib><creatorcontrib>ZHANG QINGYUN</creatorcontrib><creatorcontrib>YE XIAOLONG</creatorcontrib><creatorcontrib>JIANG TONGTONG</creatorcontrib><creatorcontrib>WENG LEYI</creatorcontrib><creatorcontrib>CHEN QINGQING</creatorcontrib><title>System downtime intelligent prediction method, device and equipment and readable storage medium</title><description>The invention discloses a system downtime intelligent prediction method, device and equipment and a readable storage medium, and the method comprises the steps: inputting a first feature vector corresponding to real-time log information into an anomaly detection model, obtaining a detection result, and determining real-time abnormal log information based on the detection result; the anomaly detection model comprises an isolated forest model and a density clustering model, and output information of the isolated forest model is input information of the density clustering model; and predicting the time and probability of system downtime based on the real-time abnormal log information. According to the method, the real-time abnormal log information is generated through the abnormal detection model, the time and probability of system downtime are predicted through the real-time abnormal log information, operation and maintenance personnel maintain the system according to the prediction result, and the stability of</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi70KwkAQBtNYiPoOa69gFNSUEhQrG-3Dmf2MC_dnbqP49hrwAayGgZlhVp3fSeGIw8urOJB4hbXSwCvFFiy1SvDkoPfAM2I8pQYZz4RHJ9H1XW8tDJurBSUNrWnwPVg6N84GN2MTJj-OsulhfymPc8RQIUVTw0Or8pTn62JRbJeb3eqf5gPRYD15</recordid><startdate>20231020</startdate><enddate>20231020</enddate><creator>CHEN JIANFEI</creator><creator>ZHANG QINGYUN</creator><creator>YE XIAOLONG</creator><creator>JIANG TONGTONG</creator><creator>WENG LEYI</creator><creator>CHEN QINGQING</creator><scope>EVB</scope></search><sort><creationdate>20231020</creationdate><title>System downtime intelligent prediction method, device and equipment and readable storage medium</title><author>CHEN JIANFEI ; ZHANG QINGYUN ; YE XIAOLONG ; JIANG TONGTONG ; WENG LEYI ; CHEN QINGQING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116909827A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN JIANFEI</creatorcontrib><creatorcontrib>ZHANG QINGYUN</creatorcontrib><creatorcontrib>YE XIAOLONG</creatorcontrib><creatorcontrib>JIANG TONGTONG</creatorcontrib><creatorcontrib>WENG LEYI</creatorcontrib><creatorcontrib>CHEN QINGQING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN JIANFEI</au><au>ZHANG QINGYUN</au><au>YE XIAOLONG</au><au>JIANG TONGTONG</au><au>WENG LEYI</au><au>CHEN QINGQING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System downtime intelligent prediction method, device and equipment and readable storage medium</title><date>2023-10-20</date><risdate>2023</risdate><abstract>The invention discloses a system downtime intelligent prediction method, device and equipment and a readable storage medium, and the method comprises the steps: inputting a first feature vector corresponding to real-time log information into an anomaly detection model, obtaining a detection result, and determining real-time abnormal log information based on the detection result; the anomaly detection model comprises an isolated forest model and a density clustering model, and output information of the isolated forest model is input information of the density clustering model; and predicting the time and probability of system downtime based on the real-time abnormal log information. According to the method, the real-time abnormal log information is generated through the abnormal detection model, the time and probability of system downtime are predicted through the real-time abnormal log information, operation and maintenance personnel maintain the system according to the prediction result, and the stability of</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116909827A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title System downtime intelligent prediction method, device and equipment and readable storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20JIANFEI&rft.date=2023-10-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116909827A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true