System downtime intelligent prediction method, device and equipment and readable storage medium
The invention discloses a system downtime intelligent prediction method, device and equipment and a readable storage medium, and the method comprises the steps: inputting a first feature vector corresponding to real-time log information into an anomaly detection model, obtaining a detection result,...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHEN JIANFEI ZHANG QINGYUN YE XIAOLONG JIANG TONGTONG WENG LEYI CHEN QINGQING |
description | The invention discloses a system downtime intelligent prediction method, device and equipment and a readable storage medium, and the method comprises the steps: inputting a first feature vector corresponding to real-time log information into an anomaly detection model, obtaining a detection result, and determining real-time abnormal log information based on the detection result; the anomaly detection model comprises an isolated forest model and a density clustering model, and output information of the isolated forest model is input information of the density clustering model; and predicting the time and probability of system downtime based on the real-time abnormal log information. According to the method, the real-time abnormal log information is generated through the abnormal detection model, the time and probability of system downtime are predicted through the real-time abnormal log information, operation and maintenance personnel maintain the system according to the prediction result, and the stability of |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116909827A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116909827A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116909827A3</originalsourceid><addsrcrecordid>eNqNi70KwkAQBtNYiPoOa69gFNSUEhQrG-3Dmf2MC_dnbqP49hrwAayGgZlhVp3fSeGIw8urOJB4hbXSwCvFFiy1SvDkoPfAM2I8pQYZz4RHJ9H1XW8tDJurBSUNrWnwPVg6N84GN2MTJj-OsulhfymPc8RQIUVTw0Or8pTn62JRbJeb3eqf5gPRYD15</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System downtime intelligent prediction method, device and equipment and readable storage medium</title><source>esp@cenet</source><creator>CHEN JIANFEI ; ZHANG QINGYUN ; YE XIAOLONG ; JIANG TONGTONG ; WENG LEYI ; CHEN QINGQING</creator><creatorcontrib>CHEN JIANFEI ; ZHANG QINGYUN ; YE XIAOLONG ; JIANG TONGTONG ; WENG LEYI ; CHEN QINGQING</creatorcontrib><description>The invention discloses a system downtime intelligent prediction method, device and equipment and a readable storage medium, and the method comprises the steps: inputting a first feature vector corresponding to real-time log information into an anomaly detection model, obtaining a detection result, and determining real-time abnormal log information based on the detection result; the anomaly detection model comprises an isolated forest model and a density clustering model, and output information of the isolated forest model is input information of the density clustering model; and predicting the time and probability of system downtime based on the real-time abnormal log information. According to the method, the real-time abnormal log information is generated through the abnormal detection model, the time and probability of system downtime are predicted through the real-time abnormal log information, operation and maintenance personnel maintain the system according to the prediction result, and the stability of</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231020&DB=EPODOC&CC=CN&NR=116909827A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25551,76302</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231020&DB=EPODOC&CC=CN&NR=116909827A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN JIANFEI</creatorcontrib><creatorcontrib>ZHANG QINGYUN</creatorcontrib><creatorcontrib>YE XIAOLONG</creatorcontrib><creatorcontrib>JIANG TONGTONG</creatorcontrib><creatorcontrib>WENG LEYI</creatorcontrib><creatorcontrib>CHEN QINGQING</creatorcontrib><title>System downtime intelligent prediction method, device and equipment and readable storage medium</title><description>The invention discloses a system downtime intelligent prediction method, device and equipment and a readable storage medium, and the method comprises the steps: inputting a first feature vector corresponding to real-time log information into an anomaly detection model, obtaining a detection result, and determining real-time abnormal log information based on the detection result; the anomaly detection model comprises an isolated forest model and a density clustering model, and output information of the isolated forest model is input information of the density clustering model; and predicting the time and probability of system downtime based on the real-time abnormal log information. According to the method, the real-time abnormal log information is generated through the abnormal detection model, the time and probability of system downtime are predicted through the real-time abnormal log information, operation and maintenance personnel maintain the system according to the prediction result, and the stability of</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi70KwkAQBtNYiPoOa69gFNSUEhQrG-3Dmf2MC_dnbqP49hrwAayGgZlhVp3fSeGIw8urOJB4hbXSwCvFFiy1SvDkoPfAM2I8pQYZz4RHJ9H1XW8tDJurBSUNrWnwPVg6N84GN2MTJj-OsulhfymPc8RQIUVTw0Or8pTn62JRbJeb3eqf5gPRYD15</recordid><startdate>20231020</startdate><enddate>20231020</enddate><creator>CHEN JIANFEI</creator><creator>ZHANG QINGYUN</creator><creator>YE XIAOLONG</creator><creator>JIANG TONGTONG</creator><creator>WENG LEYI</creator><creator>CHEN QINGQING</creator><scope>EVB</scope></search><sort><creationdate>20231020</creationdate><title>System downtime intelligent prediction method, device and equipment and readable storage medium</title><author>CHEN JIANFEI ; ZHANG QINGYUN ; YE XIAOLONG ; JIANG TONGTONG ; WENG LEYI ; CHEN QINGQING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116909827A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN JIANFEI</creatorcontrib><creatorcontrib>ZHANG QINGYUN</creatorcontrib><creatorcontrib>YE XIAOLONG</creatorcontrib><creatorcontrib>JIANG TONGTONG</creatorcontrib><creatorcontrib>WENG LEYI</creatorcontrib><creatorcontrib>CHEN QINGQING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN JIANFEI</au><au>ZHANG QINGYUN</au><au>YE XIAOLONG</au><au>JIANG TONGTONG</au><au>WENG LEYI</au><au>CHEN QINGQING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System downtime intelligent prediction method, device and equipment and readable storage medium</title><date>2023-10-20</date><risdate>2023</risdate><abstract>The invention discloses a system downtime intelligent prediction method, device and equipment and a readable storage medium, and the method comprises the steps: inputting a first feature vector corresponding to real-time log information into an anomaly detection model, obtaining a detection result, and determining real-time abnormal log information based on the detection result; the anomaly detection model comprises an isolated forest model and a density clustering model, and output information of the isolated forest model is input information of the density clustering model; and predicting the time and probability of system downtime based on the real-time abnormal log information. According to the method, the real-time abnormal log information is generated through the abnormal detection model, the time and probability of system downtime are predicted through the real-time abnormal log information, operation and maintenance personnel maintain the system according to the prediction result, and the stability of</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116909827A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | System downtime intelligent prediction method, device and equipment and readable storage medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20JIANFEI&rft.date=2023-10-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116909827A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |