Bolt image preprocessing method based on camera motion model recovery and super-resolution
The invention discloses a bolt image preprocessing method based on camera motion model recovery and super-resolution. The method comprises the following steps: S1, assembling an unmanned aerial vehicle carrying an on-line detection airborne computer and an ultra-long focal length zoom aerial camera;...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CUI QIANG YUAN HAO SHU DONGLIN ZHAO WENYU ZHANG GUOYUE YU LIANG |
description | The invention discloses a bolt image preprocessing method based on camera motion model recovery and super-resolution. The method comprises the following steps: S1, assembling an unmanned aerial vehicle carrying an on-line detection airborne computer and an ultra-long focal length zoom aerial camera; s2, planning a flight route and a flight shooting mode of the unmanned aerial vehicle according to the bridge type and the detection parts, and collecting bolt images of the detection parts; s3, automatically calculating the displacement and direction of adjacent frames by adopting an optical flow algorithm, and screening out fuzzy frames; deblurring the blurred frame by adopting an inverse filtering method according to the calculated size and direction of the blurred kernel; and S4, the collected bolt images are processed through an adaptive scale segmentation method, and the bolt images shot at different distances are zoomed, so that the scale of a single bolt in the zoomed bolt images is close to the input size |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116894775A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116894775A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116894775A3</originalsourceid><addsrcrecordid>eNqNyj0KwkAQhuE0FqLeYTxAiuBPtNSgWFlZ2YRx9zMGdneW2Y3g7VXwAFYvLzzj4roXl6n33IGiIqoYpNSHjjzyQyzdOMGSBDLsoUxecv85LxaOFEae0BdxsJSGCC0VSdzwNdNidGeXMPt1UsyPh0tzKhGlRYpsEJDb5lxV6812Wder3eIf8wZRfjuY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Bolt image preprocessing method based on camera motion model recovery and super-resolution</title><source>esp@cenet</source><creator>CUI QIANG ; YUAN HAO ; SHU DONGLIN ; ZHAO WENYU ; ZHANG GUOYUE ; YU LIANG</creator><creatorcontrib>CUI QIANG ; YUAN HAO ; SHU DONGLIN ; ZHAO WENYU ; ZHANG GUOYUE ; YU LIANG</creatorcontrib><description>The invention discloses a bolt image preprocessing method based on camera motion model recovery and super-resolution. The method comprises the following steps: S1, assembling an unmanned aerial vehicle carrying an on-line detection airborne computer and an ultra-long focal length zoom aerial camera; s2, planning a flight route and a flight shooting mode of the unmanned aerial vehicle according to the bridge type and the detection parts, and collecting bolt images of the detection parts; s3, automatically calculating the displacement and direction of adjacent frames by adopting an optical flow algorithm, and screening out fuzzy frames; deblurring the blurred frame by adopting an inverse filtering method according to the calculated size and direction of the blurred kernel; and S4, the collected bolt images are processed through an adaptive scale segmentation method, and the bolt images shot at different distances are zoomed, so that the scale of a single bolt in the zoomed bolt images is close to the input size</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231017&DB=EPODOC&CC=CN&NR=116894775A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231017&DB=EPODOC&CC=CN&NR=116894775A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CUI QIANG</creatorcontrib><creatorcontrib>YUAN HAO</creatorcontrib><creatorcontrib>SHU DONGLIN</creatorcontrib><creatorcontrib>ZHAO WENYU</creatorcontrib><creatorcontrib>ZHANG GUOYUE</creatorcontrib><creatorcontrib>YU LIANG</creatorcontrib><title>Bolt image preprocessing method based on camera motion model recovery and super-resolution</title><description>The invention discloses a bolt image preprocessing method based on camera motion model recovery and super-resolution. The method comprises the following steps: S1, assembling an unmanned aerial vehicle carrying an on-line detection airborne computer and an ultra-long focal length zoom aerial camera; s2, planning a flight route and a flight shooting mode of the unmanned aerial vehicle according to the bridge type and the detection parts, and collecting bolt images of the detection parts; s3, automatically calculating the displacement and direction of adjacent frames by adopting an optical flow algorithm, and screening out fuzzy frames; deblurring the blurred frame by adopting an inverse filtering method according to the calculated size and direction of the blurred kernel; and S4, the collected bolt images are processed through an adaptive scale segmentation method, and the bolt images shot at different distances are zoomed, so that the scale of a single bolt in the zoomed bolt images is close to the input size</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyj0KwkAQhuE0FqLeYTxAiuBPtNSgWFlZ2YRx9zMGdneW2Y3g7VXwAFYvLzzj4roXl6n33IGiIqoYpNSHjjzyQyzdOMGSBDLsoUxecv85LxaOFEae0BdxsJSGCC0VSdzwNdNidGeXMPt1UsyPh0tzKhGlRYpsEJDb5lxV6812Wder3eIf8wZRfjuY</recordid><startdate>20231017</startdate><enddate>20231017</enddate><creator>CUI QIANG</creator><creator>YUAN HAO</creator><creator>SHU DONGLIN</creator><creator>ZHAO WENYU</creator><creator>ZHANG GUOYUE</creator><creator>YU LIANG</creator><scope>EVB</scope></search><sort><creationdate>20231017</creationdate><title>Bolt image preprocessing method based on camera motion model recovery and super-resolution</title><author>CUI QIANG ; YUAN HAO ; SHU DONGLIN ; ZHAO WENYU ; ZHANG GUOYUE ; YU LIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116894775A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CUI QIANG</creatorcontrib><creatorcontrib>YUAN HAO</creatorcontrib><creatorcontrib>SHU DONGLIN</creatorcontrib><creatorcontrib>ZHAO WENYU</creatorcontrib><creatorcontrib>ZHANG GUOYUE</creatorcontrib><creatorcontrib>YU LIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CUI QIANG</au><au>YUAN HAO</au><au>SHU DONGLIN</au><au>ZHAO WENYU</au><au>ZHANG GUOYUE</au><au>YU LIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Bolt image preprocessing method based on camera motion model recovery and super-resolution</title><date>2023-10-17</date><risdate>2023</risdate><abstract>The invention discloses a bolt image preprocessing method based on camera motion model recovery and super-resolution. The method comprises the following steps: S1, assembling an unmanned aerial vehicle carrying an on-line detection airborne computer and an ultra-long focal length zoom aerial camera; s2, planning a flight route and a flight shooting mode of the unmanned aerial vehicle according to the bridge type and the detection parts, and collecting bolt images of the detection parts; s3, automatically calculating the displacement and direction of adjacent frames by adopting an optical flow algorithm, and screening out fuzzy frames; deblurring the blurred frame by adopting an inverse filtering method according to the calculated size and direction of the blurred kernel; and S4, the collected bolt images are processed through an adaptive scale segmentation method, and the bolt images shot at different distances are zoomed, so that the scale of a single bolt in the zoomed bolt images is close to the input size</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116894775A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Bolt image preprocessing method based on camera motion model recovery and super-resolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CUI%20QIANG&rft.date=2023-10-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116894775A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |