Gesture recognition method and system based on multi-channel information fusion

The invention relates to the field of gesture intelligent recognition, and particularly discloses a gesture recognition method and system based on multi-channel information fusion, and the method comprises the steps: extracting local implicit high-dimensional features of a plurality of surface elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LONG MANSHENG, LIU CHANGSONG, LI DA, ZHU QING, XIAO LINGZHONG, JIANG HAIFEI, ZHOU XIAN'EN, WU CHENGZHONG, LIU SHIFU, YANG LIN, WANG YAONAN, CHENG JUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LONG MANSHENG
LIU CHANGSONG
LI DA
ZHU QING
XIAO LINGZHONG
JIANG HAIFEI
ZHOU XIAN'EN
WU CHENGZHONG
LIU SHIFU
YANG LIN
WANG YAONAN
CHENG JUN
description The invention relates to the field of gesture intelligent recognition, and particularly discloses a gesture recognition method and system based on multi-channel information fusion, and the method comprises the steps: extracting local implicit high-dimensional features of a plurality of surface electromyogram signals of the surface of an arm of a subject through employing a convolutional neural network model of a double attention mechanism; the channel attention and the space attention respectively pay attention to the feature information of the feature content and the feature position in the image, so that mutual complementation is realized to a certain extent, and the feature extraction effect of the network is improved. In the feature fusion process, information compensation is carried out through displacement of probability distribution, information balance between feature vectors can be achieved through compensation information degradation, and then the classification accuracy is improved. In this way, th
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116880688A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116880688A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116880688A3</originalsourceid><addsrcrecordid>eNrjZPB3Ty0uKS1KVShKTc5Pz8ssyczPU8hNLcnIT1FIzEtRKK4sLknNVUhKLE5NUQBJleaUZOomZyTm5aXmKGTmpeUX5SaCNaWVFgMpHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oS7-xnaGhmYWEAxI7GxKgBAJurN5I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Gesture recognition method and system based on multi-channel information fusion</title><source>esp@cenet</source><creator>LONG MANSHENG ; LIU CHANGSONG ; LI DA ; ZHU QING ; XIAO LINGZHONG ; JIANG HAIFEI ; ZHOU XIAN'EN ; WU CHENGZHONG ; LIU SHIFU ; YANG LIN ; WANG YAONAN ; CHENG JUN</creator><creatorcontrib>LONG MANSHENG ; LIU CHANGSONG ; LI DA ; ZHU QING ; XIAO LINGZHONG ; JIANG HAIFEI ; ZHOU XIAN'EN ; WU CHENGZHONG ; LIU SHIFU ; YANG LIN ; WANG YAONAN ; CHENG JUN</creatorcontrib><description>The invention relates to the field of gesture intelligent recognition, and particularly discloses a gesture recognition method and system based on multi-channel information fusion, and the method comprises the steps: extracting local implicit high-dimensional features of a plurality of surface electromyogram signals of the surface of an arm of a subject through employing a convolutional neural network model of a double attention mechanism; the channel attention and the space attention respectively pay attention to the feature information of the feature content and the feature position in the image, so that mutual complementation is realized to a certain extent, and the feature extraction effect of the network is improved. In the feature fusion process, information compensation is carried out through displacement of probability distribution, information balance between feature vectors can be achieved through compensation information degradation, and then the classification accuracy is improved. In this way, th</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231013&amp;DB=EPODOC&amp;CC=CN&amp;NR=116880688A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231013&amp;DB=EPODOC&amp;CC=CN&amp;NR=116880688A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LONG MANSHENG</creatorcontrib><creatorcontrib>LIU CHANGSONG</creatorcontrib><creatorcontrib>LI DA</creatorcontrib><creatorcontrib>ZHU QING</creatorcontrib><creatorcontrib>XIAO LINGZHONG</creatorcontrib><creatorcontrib>JIANG HAIFEI</creatorcontrib><creatorcontrib>ZHOU XIAN'EN</creatorcontrib><creatorcontrib>WU CHENGZHONG</creatorcontrib><creatorcontrib>LIU SHIFU</creatorcontrib><creatorcontrib>YANG LIN</creatorcontrib><creatorcontrib>WANG YAONAN</creatorcontrib><creatorcontrib>CHENG JUN</creatorcontrib><title>Gesture recognition method and system based on multi-channel information fusion</title><description>The invention relates to the field of gesture intelligent recognition, and particularly discloses a gesture recognition method and system based on multi-channel information fusion, and the method comprises the steps: extracting local implicit high-dimensional features of a plurality of surface electromyogram signals of the surface of an arm of a subject through employing a convolutional neural network model of a double attention mechanism; the channel attention and the space attention respectively pay attention to the feature information of the feature content and the feature position in the image, so that mutual complementation is realized to a certain extent, and the feature extraction effect of the network is improved. In the feature fusion process, information compensation is carried out through displacement of probability distribution, information balance between feature vectors can be achieved through compensation information degradation, and then the classification accuracy is improved. In this way, th</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB3Ty0uKS1KVShKTc5Pz8ssyczPU8hNLcnIT1FIzEtRKK4sLknNVUhKLE5NUQBJleaUZOomZyTm5aXmKGTmpeUX5SaCNaWVFgMpHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oS7-xnaGhmYWEAxI7GxKgBAJurN5I</recordid><startdate>20231013</startdate><enddate>20231013</enddate><creator>LONG MANSHENG</creator><creator>LIU CHANGSONG</creator><creator>LI DA</creator><creator>ZHU QING</creator><creator>XIAO LINGZHONG</creator><creator>JIANG HAIFEI</creator><creator>ZHOU XIAN'EN</creator><creator>WU CHENGZHONG</creator><creator>LIU SHIFU</creator><creator>YANG LIN</creator><creator>WANG YAONAN</creator><creator>CHENG JUN</creator><scope>EVB</scope></search><sort><creationdate>20231013</creationdate><title>Gesture recognition method and system based on multi-channel information fusion</title><author>LONG MANSHENG ; LIU CHANGSONG ; LI DA ; ZHU QING ; XIAO LINGZHONG ; JIANG HAIFEI ; ZHOU XIAN'EN ; WU CHENGZHONG ; LIU SHIFU ; YANG LIN ; WANG YAONAN ; CHENG JUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116880688A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LONG MANSHENG</creatorcontrib><creatorcontrib>LIU CHANGSONG</creatorcontrib><creatorcontrib>LI DA</creatorcontrib><creatorcontrib>ZHU QING</creatorcontrib><creatorcontrib>XIAO LINGZHONG</creatorcontrib><creatorcontrib>JIANG HAIFEI</creatorcontrib><creatorcontrib>ZHOU XIAN'EN</creatorcontrib><creatorcontrib>WU CHENGZHONG</creatorcontrib><creatorcontrib>LIU SHIFU</creatorcontrib><creatorcontrib>YANG LIN</creatorcontrib><creatorcontrib>WANG YAONAN</creatorcontrib><creatorcontrib>CHENG JUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LONG MANSHENG</au><au>LIU CHANGSONG</au><au>LI DA</au><au>ZHU QING</au><au>XIAO LINGZHONG</au><au>JIANG HAIFEI</au><au>ZHOU XIAN'EN</au><au>WU CHENGZHONG</au><au>LIU SHIFU</au><au>YANG LIN</au><au>WANG YAONAN</au><au>CHENG JUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Gesture recognition method and system based on multi-channel information fusion</title><date>2023-10-13</date><risdate>2023</risdate><abstract>The invention relates to the field of gesture intelligent recognition, and particularly discloses a gesture recognition method and system based on multi-channel information fusion, and the method comprises the steps: extracting local implicit high-dimensional features of a plurality of surface electromyogram signals of the surface of an arm of a subject through employing a convolutional neural network model of a double attention mechanism; the channel attention and the space attention respectively pay attention to the feature information of the feature content and the feature position in the image, so that mutual complementation is realized to a certain extent, and the feature extraction effect of the network is improved. In the feature fusion process, information compensation is carried out through displacement of probability distribution, information balance between feature vectors can be achieved through compensation information degradation, and then the classification accuracy is improved. In this way, th</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116880688A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Gesture recognition method and system based on multi-channel information fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LONG%20MANSHENG&rft.date=2023-10-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116880688A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true