Lightweight tiny traffic sign recognition method for vehicle-mounted intelligent system

The invention relates to a lightweight tiny traffic sign recognition method for a vehicle-mounted intelligent system, and belongs to the field of intelligent traffic. And performing compression processing on the acquired environment image to obtain an image file with a specified size. Inputting the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU QIUZHUO, HUANG XIN, ZHOU FENG, HU BO, ZHOU ZHIHAO, LI YUAN, GONG KANG, ZHENG RENZHONG, ZHU ZHIQIN, LI JIAXING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU QIUZHUO
HUANG XIN
ZHOU FENG
HU BO
ZHOU ZHIHAO
LI YUAN
GONG KANG
ZHENG RENZHONG
ZHU ZHIQIN
LI JIAXING
description The invention relates to a lightweight tiny traffic sign recognition method for a vehicle-mounted intelligent system, and belongs to the field of intelligent traffic. And performing compression processing on the acquired environment image to obtain an image file with a specified size. Inputting the image into an information flow logic propagation network, and simply extracting multi-layer low-level semantic information of the image by the information flow logic propagation network; boundary information of low-level semantic information is obtained through an edge information optimization module, and intra-layer and inter-layer high-level graph semantic information of multiple feature layers is extracted through boundary information supervision graph convolution flow. The method comprises the following steps: performing classification prediction by using an obtained advanced feature layer, and sparsely expressing a target area; then, multi-layer advanced information extracted by image convolution flow is split
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116863443A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116863443A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116863443A3</originalsourceid><addsrcrecordid>eNqNyjEKwkAQRuE0FqLeYTxAipAQbCVELMRKsAxh8-9mYHc2ZEclt1fBA9h8r3nr7H5hN-oLX0lZFtK5t5YNJXZCM0x0wspRKEDHOJCNMz0xsvHIQ3yIYiD-6D07iFJakiJss5XtfcLu1022P7W35pxjih3S1BsItGuuRVEf6rKqymP5z_MG2WA68A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Lightweight tiny traffic sign recognition method for vehicle-mounted intelligent system</title><source>esp@cenet</source><creator>LIU QIUZHUO ; HUANG XIN ; ZHOU FENG ; HU BO ; ZHOU ZHIHAO ; LI YUAN ; GONG KANG ; ZHENG RENZHONG ; ZHU ZHIQIN ; LI JIAXING</creator><creatorcontrib>LIU QIUZHUO ; HUANG XIN ; ZHOU FENG ; HU BO ; ZHOU ZHIHAO ; LI YUAN ; GONG KANG ; ZHENG RENZHONG ; ZHU ZHIQIN ; LI JIAXING</creatorcontrib><description>The invention relates to a lightweight tiny traffic sign recognition method for a vehicle-mounted intelligent system, and belongs to the field of intelligent traffic. And performing compression processing on the acquired environment image to obtain an image file with a specified size. Inputting the image into an information flow logic propagation network, and simply extracting multi-layer low-level semantic information of the image by the information flow logic propagation network; boundary information of low-level semantic information is obtained through an edge information optimization module, and intra-layer and inter-layer high-level graph semantic information of multiple feature layers is extracted through boundary information supervision graph convolution flow. The method comprises the following steps: performing classification prediction by using an obtained advanced feature layer, and sparsely expressing a target area; then, multi-layer advanced information extracted by image convolution flow is split</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231010&amp;DB=EPODOC&amp;CC=CN&amp;NR=116863443A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231010&amp;DB=EPODOC&amp;CC=CN&amp;NR=116863443A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU QIUZHUO</creatorcontrib><creatorcontrib>HUANG XIN</creatorcontrib><creatorcontrib>ZHOU FENG</creatorcontrib><creatorcontrib>HU BO</creatorcontrib><creatorcontrib>ZHOU ZHIHAO</creatorcontrib><creatorcontrib>LI YUAN</creatorcontrib><creatorcontrib>GONG KANG</creatorcontrib><creatorcontrib>ZHENG RENZHONG</creatorcontrib><creatorcontrib>ZHU ZHIQIN</creatorcontrib><creatorcontrib>LI JIAXING</creatorcontrib><title>Lightweight tiny traffic sign recognition method for vehicle-mounted intelligent system</title><description>The invention relates to a lightweight tiny traffic sign recognition method for a vehicle-mounted intelligent system, and belongs to the field of intelligent traffic. And performing compression processing on the acquired environment image to obtain an image file with a specified size. Inputting the image into an information flow logic propagation network, and simply extracting multi-layer low-level semantic information of the image by the information flow logic propagation network; boundary information of low-level semantic information is obtained through an edge information optimization module, and intra-layer and inter-layer high-level graph semantic information of multiple feature layers is extracted through boundary information supervision graph convolution flow. The method comprises the following steps: performing classification prediction by using an obtained advanced feature layer, and sparsely expressing a target area; then, multi-layer advanced information extracted by image convolution flow is split</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwkAQRuE0FqLeYTxAipAQbCVELMRKsAxh8-9mYHc2ZEclt1fBA9h8r3nr7H5hN-oLX0lZFtK5t5YNJXZCM0x0wspRKEDHOJCNMz0xsvHIQ3yIYiD-6D07iFJakiJss5XtfcLu1022P7W35pxjih3S1BsItGuuRVEf6rKqymP5z_MG2WA68A</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>LIU QIUZHUO</creator><creator>HUANG XIN</creator><creator>ZHOU FENG</creator><creator>HU BO</creator><creator>ZHOU ZHIHAO</creator><creator>LI YUAN</creator><creator>GONG KANG</creator><creator>ZHENG RENZHONG</creator><creator>ZHU ZHIQIN</creator><creator>LI JIAXING</creator><scope>EVB</scope></search><sort><creationdate>20231010</creationdate><title>Lightweight tiny traffic sign recognition method for vehicle-mounted intelligent system</title><author>LIU QIUZHUO ; HUANG XIN ; ZHOU FENG ; HU BO ; ZHOU ZHIHAO ; LI YUAN ; GONG KANG ; ZHENG RENZHONG ; ZHU ZHIQIN ; LI JIAXING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116863443A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU QIUZHUO</creatorcontrib><creatorcontrib>HUANG XIN</creatorcontrib><creatorcontrib>ZHOU FENG</creatorcontrib><creatorcontrib>HU BO</creatorcontrib><creatorcontrib>ZHOU ZHIHAO</creatorcontrib><creatorcontrib>LI YUAN</creatorcontrib><creatorcontrib>GONG KANG</creatorcontrib><creatorcontrib>ZHENG RENZHONG</creatorcontrib><creatorcontrib>ZHU ZHIQIN</creatorcontrib><creatorcontrib>LI JIAXING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU QIUZHUO</au><au>HUANG XIN</au><au>ZHOU FENG</au><au>HU BO</au><au>ZHOU ZHIHAO</au><au>LI YUAN</au><au>GONG KANG</au><au>ZHENG RENZHONG</au><au>ZHU ZHIQIN</au><au>LI JIAXING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Lightweight tiny traffic sign recognition method for vehicle-mounted intelligent system</title><date>2023-10-10</date><risdate>2023</risdate><abstract>The invention relates to a lightweight tiny traffic sign recognition method for a vehicle-mounted intelligent system, and belongs to the field of intelligent traffic. And performing compression processing on the acquired environment image to obtain an image file with a specified size. Inputting the image into an information flow logic propagation network, and simply extracting multi-layer low-level semantic information of the image by the information flow logic propagation network; boundary information of low-level semantic information is obtained through an edge information optimization module, and intra-layer and inter-layer high-level graph semantic information of multiple feature layers is extracted through boundary information supervision graph convolution flow. The method comprises the following steps: performing classification prediction by using an obtained advanced feature layer, and sparsely expressing a target area; then, multi-layer advanced information extracted by image convolution flow is split</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116863443A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Lightweight tiny traffic sign recognition method for vehicle-mounted intelligent system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20QIUZHUO&rft.date=2023-10-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116863443A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true