Metal shaft surface defect identification method and system based on deep learning

The invention relates to the technical field of data processing, in particular to a metal shaft surface defect identification method and system based on deep learning. The method comprises the following steps: carrying out asynchronous light source surface irradiation image data acquisition and gray...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: XIE CHANGFEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIE CHANGFEI
description The invention relates to the technical field of data processing, in particular to a metal shaft surface defect identification method and system based on deep learning. The method comprises the following steps: carrying out asynchronous light source surface irradiation image data acquisition and gray level image data conversion on the metal uranium device by utilizing light source equipment with light source wavelength difference, and generating abnormal gray level image block data; performing physical modeling on the metal uranium surface image data of the metal uranium device by using a three-dimensional modeling technology, and performing abnormal region extraction by using abnormal gray level image block data to generate abnormal surface region image data; performing static metal uranium defect grade calculation on the abnormal surface area image data to generate a static metal uranium defect grade; and performing metal uranium surface dynamic defect prediction on the abnormal surface area image data by us
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116862914A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116862914A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116862914A3</originalsourceid><addsrcrecordid>eNqNjTEOwjAQBN1QIOAPxwMoDCiCEkUgGigQfXTE68SSY1u5o-D3pOABVFPMSDM3jxuUI0nPXkneo-cW5ODRKgWHpMGHljXkRAO0z444OZKPKAZ6scDRpBxQKILHFFK3NDPPUbD6cWHWl_Ozvm5QcgMp0yFBm_pubXWotke7P-3-ab4GYzfv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Metal shaft surface defect identification method and system based on deep learning</title><source>esp@cenet</source><creator>XIE CHANGFEI</creator><creatorcontrib>XIE CHANGFEI</creatorcontrib><description>The invention relates to the technical field of data processing, in particular to a metal shaft surface defect identification method and system based on deep learning. The method comprises the following steps: carrying out asynchronous light source surface irradiation image data acquisition and gray level image data conversion on the metal uranium device by utilizing light source equipment with light source wavelength difference, and generating abnormal gray level image block data; performing physical modeling on the metal uranium surface image data of the metal uranium device by using a three-dimensional modeling technology, and performing abnormal region extraction by using abnormal gray level image block data to generate abnormal surface region image data; performing static metal uranium defect grade calculation on the abnormal surface area image data to generate a static metal uranium defect grade; and performing metal uranium surface dynamic defect prediction on the abnormal surface area image data by us</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231010&amp;DB=EPODOC&amp;CC=CN&amp;NR=116862914A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231010&amp;DB=EPODOC&amp;CC=CN&amp;NR=116862914A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIE CHANGFEI</creatorcontrib><title>Metal shaft surface defect identification method and system based on deep learning</title><description>The invention relates to the technical field of data processing, in particular to a metal shaft surface defect identification method and system based on deep learning. The method comprises the following steps: carrying out asynchronous light source surface irradiation image data acquisition and gray level image data conversion on the metal uranium device by utilizing light source equipment with light source wavelength difference, and generating abnormal gray level image block data; performing physical modeling on the metal uranium surface image data of the metal uranium device by using a three-dimensional modeling technology, and performing abnormal region extraction by using abnormal gray level image block data to generate abnormal surface region image data; performing static metal uranium defect grade calculation on the abnormal surface area image data to generate a static metal uranium defect grade; and performing metal uranium surface dynamic defect prediction on the abnormal surface area image data by us</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTEOwjAQBN1QIOAPxwMoDCiCEkUgGigQfXTE68SSY1u5o-D3pOABVFPMSDM3jxuUI0nPXkneo-cW5ODRKgWHpMGHljXkRAO0z444OZKPKAZ6scDRpBxQKILHFFK3NDPPUbD6cWHWl_Ozvm5QcgMp0yFBm_pubXWotke7P-3-ab4GYzfv</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>XIE CHANGFEI</creator><scope>EVB</scope></search><sort><creationdate>20231010</creationdate><title>Metal shaft surface defect identification method and system based on deep learning</title><author>XIE CHANGFEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116862914A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XIE CHANGFEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIE CHANGFEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Metal shaft surface defect identification method and system based on deep learning</title><date>2023-10-10</date><risdate>2023</risdate><abstract>The invention relates to the technical field of data processing, in particular to a metal shaft surface defect identification method and system based on deep learning. The method comprises the following steps: carrying out asynchronous light source surface irradiation image data acquisition and gray level image data conversion on the metal uranium device by utilizing light source equipment with light source wavelength difference, and generating abnormal gray level image block data; performing physical modeling on the metal uranium surface image data of the metal uranium device by using a three-dimensional modeling technology, and performing abnormal region extraction by using abnormal gray level image block data to generate abnormal surface region image data; performing static metal uranium defect grade calculation on the abnormal surface area image data to generate a static metal uranium defect grade; and performing metal uranium surface dynamic defect prediction on the abnormal surface area image data by us</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116862914A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Metal shaft surface defect identification method and system based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIE%20CHANGFEI&rft.date=2023-10-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116862914A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true