Steady-state visual evoked potential analysis method, system and equipment

The invention provides a steady-state visual evoked potential analysis method, system and device, and relates to the field of SSVEP analysis, the method comprises the following steps: acquiring a multi-channel electroencephalogram signal, and preprocessing the multi-channel electroencephalogram sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SUN LEI, CHEN SI, SONG YU, GAO QIANG, CHENG MEIYI, LIU JUNJIE, QIN WENJING, LI XIAOLIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SUN LEI
CHEN SI
SONG YU
GAO QIANG
CHENG MEIYI
LIU JUNJIE
QIN WENJING
LI XIAOLIN
description The invention provides a steady-state visual evoked potential analysis method, system and device, and relates to the field of SSVEP analysis, the method comprises the following steps: acquiring a multi-channel electroencephalogram signal, and preprocessing the multi-channel electroencephalogram signal to generate an SSVEP signal; extracting time domain features of the SSVEP signal according to a time domain feature extraction module; extracting a frequency domain feature of the SSVEP signal according to a frequency domain feature extraction module; fusing the time domain feature and the frequency domain feature to generate a time-frequency fusion feature; enabling the time-frequency fusion features to pass through an attention mechanism module, and generating a weighted loss function represented by a group of feature weights and deep features; based on the weighted loss function, inputting the deep features into a binary classifier, and outputting an SSVEP classification result; the number of the binary class
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116831600A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116831600A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116831600A3</originalsourceid><addsrcrecordid>eNqNyr0KwjAUhuEsDqLeQ9wtNBSKqxRFHFx0LwfzicH8yTkt5O7N4AU4vfDwLtXlJiBbGhYS6NnxRF5jTm9YnZMgiqtAkXxhxzpAXsnuNBcWhOpW4zO5HOq4Vosnecbm15Xano734dwgpxGc6YEIGYerMf2-M33bHrp_ni9duDWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Steady-state visual evoked potential analysis method, system and equipment</title><source>esp@cenet</source><creator>SUN LEI ; CHEN SI ; SONG YU ; GAO QIANG ; CHENG MEIYI ; LIU JUNJIE ; QIN WENJING ; LI XIAOLIN</creator><creatorcontrib>SUN LEI ; CHEN SI ; SONG YU ; GAO QIANG ; CHENG MEIYI ; LIU JUNJIE ; QIN WENJING ; LI XIAOLIN</creatorcontrib><description>The invention provides a steady-state visual evoked potential analysis method, system and device, and relates to the field of SSVEP analysis, the method comprises the following steps: acquiring a multi-channel electroencephalogram signal, and preprocessing the multi-channel electroencephalogram signal to generate an SSVEP signal; extracting time domain features of the SSVEP signal according to a time domain feature extraction module; extracting a frequency domain feature of the SSVEP signal according to a frequency domain feature extraction module; fusing the time domain feature and the frequency domain feature to generate a time-frequency fusion feature; enabling the time-frequency fusion features to pass through an attention mechanism module, and generating a weighted loss function represented by a group of feature weights and deep features; based on the weighted loss function, inputting the deep features into a binary classifier, and outputting an SSVEP classification result; the number of the binary class</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DIAGNOSIS ; ELECTRIC DIGITAL DATA PROCESSING ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231003&amp;DB=EPODOC&amp;CC=CN&amp;NR=116831600A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231003&amp;DB=EPODOC&amp;CC=CN&amp;NR=116831600A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUN LEI</creatorcontrib><creatorcontrib>CHEN SI</creatorcontrib><creatorcontrib>SONG YU</creatorcontrib><creatorcontrib>GAO QIANG</creatorcontrib><creatorcontrib>CHENG MEIYI</creatorcontrib><creatorcontrib>LIU JUNJIE</creatorcontrib><creatorcontrib>QIN WENJING</creatorcontrib><creatorcontrib>LI XIAOLIN</creatorcontrib><title>Steady-state visual evoked potential analysis method, system and equipment</title><description>The invention provides a steady-state visual evoked potential analysis method, system and device, and relates to the field of SSVEP analysis, the method comprises the following steps: acquiring a multi-channel electroencephalogram signal, and preprocessing the multi-channel electroencephalogram signal to generate an SSVEP signal; extracting time domain features of the SSVEP signal according to a time domain feature extraction module; extracting a frequency domain feature of the SSVEP signal according to a frequency domain feature extraction module; fusing the time domain feature and the frequency domain feature to generate a time-frequency fusion feature; enabling the time-frequency fusion features to pass through an attention mechanism module, and generating a weighted loss function represented by a group of feature weights and deep features; based on the weighted loss function, inputting the deep features into a binary classifier, and outputting an SSVEP classification result; the number of the binary class</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyr0KwjAUhuEsDqLeQ9wtNBSKqxRFHFx0LwfzicH8yTkt5O7N4AU4vfDwLtXlJiBbGhYS6NnxRF5jTm9YnZMgiqtAkXxhxzpAXsnuNBcWhOpW4zO5HOq4Vosnecbm15Xano734dwgpxGc6YEIGYerMf2-M33bHrp_ni9duDWA</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>SUN LEI</creator><creator>CHEN SI</creator><creator>SONG YU</creator><creator>GAO QIANG</creator><creator>CHENG MEIYI</creator><creator>LIU JUNJIE</creator><creator>QIN WENJING</creator><creator>LI XIAOLIN</creator><scope>EVB</scope></search><sort><creationdate>20231003</creationdate><title>Steady-state visual evoked potential analysis method, system and equipment</title><author>SUN LEI ; CHEN SI ; SONG YU ; GAO QIANG ; CHENG MEIYI ; LIU JUNJIE ; QIN WENJING ; LI XIAOLIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116831600A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>SUN LEI</creatorcontrib><creatorcontrib>CHEN SI</creatorcontrib><creatorcontrib>SONG YU</creatorcontrib><creatorcontrib>GAO QIANG</creatorcontrib><creatorcontrib>CHENG MEIYI</creatorcontrib><creatorcontrib>LIU JUNJIE</creatorcontrib><creatorcontrib>QIN WENJING</creatorcontrib><creatorcontrib>LI XIAOLIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUN LEI</au><au>CHEN SI</au><au>SONG YU</au><au>GAO QIANG</au><au>CHENG MEIYI</au><au>LIU JUNJIE</au><au>QIN WENJING</au><au>LI XIAOLIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Steady-state visual evoked potential analysis method, system and equipment</title><date>2023-10-03</date><risdate>2023</risdate><abstract>The invention provides a steady-state visual evoked potential analysis method, system and device, and relates to the field of SSVEP analysis, the method comprises the following steps: acquiring a multi-channel electroencephalogram signal, and preprocessing the multi-channel electroencephalogram signal to generate an SSVEP signal; extracting time domain features of the SSVEP signal according to a time domain feature extraction module; extracting a frequency domain feature of the SSVEP signal according to a frequency domain feature extraction module; fusing the time domain feature and the frequency domain feature to generate a time-frequency fusion feature; enabling the time-frequency fusion features to pass through an attention mechanism module, and generating a weighted loss function represented by a group of feature weights and deep features; based on the weighted loss function, inputting the deep features into a binary classifier, and outputting an SSVEP classification result; the number of the binary class</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116831600A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DIAGNOSIS
ELECTRIC DIGITAL DATA PROCESSING
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
PHYSICS
SURGERY
title Steady-state visual evoked potential analysis method, system and equipment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUN%20LEI&rft.date=2023-10-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116831600A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true