Power load prediction method based on dynamic decomposition-reconstruction integrated processing

The invention discloses a power load prediction method based on dynamic decomposition-reconstruction integrated processing, and the method comprises the steps: firstly obtaining power load data, carrying out the preprocessing, carrying out the decomposition of the data through mlptdense decompositio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG CHU, CHEN JIE, PENG TIAN, WANG YIWEI, WANG ZHENG, GE YIDA, ZHANG XUEDONG, CHEN JIALEI, ZHAO HUANYU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG CHU
CHEN JIE
PENG TIAN
WANG YIWEI
WANG ZHENG
GE YIDA
ZHANG XUEDONG
CHEN JIALEI
ZHAO HUANYU
description The invention discloses a power load prediction method based on dynamic decomposition-reconstruction integrated processing, and the method comprises the steps: firstly obtaining power load data, carrying out the preprocessing, carrying out the decomposition of the data through mlptdense decomposition, building a GCN-Reformer power load prediction model according to the decomposed components, carrying out the optimization of the Reformer hyper-parameters through an improved OOA algorithm, and carrying out the prediction of the power load. Selecting low-precision components needing secondary decomposition according to performance evaluation of decomposed components on a verification set, aggregating all the low-precision components by adopting permutation entropy to obtain a high-complexity component and a low-complexity component, performing secondary decomposition by adopting a WPD method, and then predicting all WPD decomposed D components by using a GCN-Reformer model, whether decomposition needs to be carr
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116822742A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116822742A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116822742A3</originalsourceid><addsrcrecordid>eNqNjLEKwjAURbM4iPoP8QM6NIq6SlGcxMG9xuS2Btr3Ql5E_Htb9AOcLgfOuVN1u_ALSXdsvY4JPrgcmHSP_GCv71bg9cD-TbYPTns47iNLGK0iDUSS0_MbBcpok80Yr9hBJFA7V5PGdoLFb2dqeTxcq1OByDUkWgdCrqtzWW52xmzXZr_6x_kAVR4-mQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power load prediction method based on dynamic decomposition-reconstruction integrated processing</title><source>esp@cenet</source><creator>ZHANG CHU ; CHEN JIE ; PENG TIAN ; WANG YIWEI ; WANG ZHENG ; GE YIDA ; ZHANG XUEDONG ; CHEN JIALEI ; ZHAO HUANYU</creator><creatorcontrib>ZHANG CHU ; CHEN JIE ; PENG TIAN ; WANG YIWEI ; WANG ZHENG ; GE YIDA ; ZHANG XUEDONG ; CHEN JIALEI ; ZHAO HUANYU</creatorcontrib><description>The invention discloses a power load prediction method based on dynamic decomposition-reconstruction integrated processing, and the method comprises the steps: firstly obtaining power load data, carrying out the preprocessing, carrying out the decomposition of the data through mlptdense decomposition, building a GCN-Reformer power load prediction model according to the decomposed components, carrying out the optimization of the Reformer hyper-parameters through an improved OOA algorithm, and carrying out the prediction of the power load. Selecting low-precision components needing secondary decomposition according to performance evaluation of decomposed components on a verification set, aggregating all the low-precision components by adopting permutation entropy to obtain a high-complexity component and a low-complexity component, performing secondary decomposition by adopting a WPD method, and then predicting all WPD decomposed D components by using a GCN-Reformer model, whether decomposition needs to be carr</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230929&amp;DB=EPODOC&amp;CC=CN&amp;NR=116822742A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230929&amp;DB=EPODOC&amp;CC=CN&amp;NR=116822742A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG CHU</creatorcontrib><creatorcontrib>CHEN JIE</creatorcontrib><creatorcontrib>PENG TIAN</creatorcontrib><creatorcontrib>WANG YIWEI</creatorcontrib><creatorcontrib>WANG ZHENG</creatorcontrib><creatorcontrib>GE YIDA</creatorcontrib><creatorcontrib>ZHANG XUEDONG</creatorcontrib><creatorcontrib>CHEN JIALEI</creatorcontrib><creatorcontrib>ZHAO HUANYU</creatorcontrib><title>Power load prediction method based on dynamic decomposition-reconstruction integrated processing</title><description>The invention discloses a power load prediction method based on dynamic decomposition-reconstruction integrated processing, and the method comprises the steps: firstly obtaining power load data, carrying out the preprocessing, carrying out the decomposition of the data through mlptdense decomposition, building a GCN-Reformer power load prediction model according to the decomposed components, carrying out the optimization of the Reformer hyper-parameters through an improved OOA algorithm, and carrying out the prediction of the power load. Selecting low-precision components needing secondary decomposition according to performance evaluation of decomposed components on a verification set, aggregating all the low-precision components by adopting permutation entropy to obtain a high-complexity component and a low-complexity component, performing secondary decomposition by adopting a WPD method, and then predicting all WPD decomposed D components by using a GCN-Reformer model, whether decomposition needs to be carr</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwjAURbM4iPoP8QM6NIq6SlGcxMG9xuS2Btr3Ql5E_Htb9AOcLgfOuVN1u_ALSXdsvY4JPrgcmHSP_GCv71bg9cD-TbYPTns47iNLGK0iDUSS0_MbBcpok80Yr9hBJFA7V5PGdoLFb2dqeTxcq1OByDUkWgdCrqtzWW52xmzXZr_6x_kAVR4-mQ</recordid><startdate>20230929</startdate><enddate>20230929</enddate><creator>ZHANG CHU</creator><creator>CHEN JIE</creator><creator>PENG TIAN</creator><creator>WANG YIWEI</creator><creator>WANG ZHENG</creator><creator>GE YIDA</creator><creator>ZHANG XUEDONG</creator><creator>CHEN JIALEI</creator><creator>ZHAO HUANYU</creator><scope>EVB</scope></search><sort><creationdate>20230929</creationdate><title>Power load prediction method based on dynamic decomposition-reconstruction integrated processing</title><author>ZHANG CHU ; CHEN JIE ; PENG TIAN ; WANG YIWEI ; WANG ZHENG ; GE YIDA ; ZHANG XUEDONG ; CHEN JIALEI ; ZHAO HUANYU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116822742A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG CHU</creatorcontrib><creatorcontrib>CHEN JIE</creatorcontrib><creatorcontrib>PENG TIAN</creatorcontrib><creatorcontrib>WANG YIWEI</creatorcontrib><creatorcontrib>WANG ZHENG</creatorcontrib><creatorcontrib>GE YIDA</creatorcontrib><creatorcontrib>ZHANG XUEDONG</creatorcontrib><creatorcontrib>CHEN JIALEI</creatorcontrib><creatorcontrib>ZHAO HUANYU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG CHU</au><au>CHEN JIE</au><au>PENG TIAN</au><au>WANG YIWEI</au><au>WANG ZHENG</au><au>GE YIDA</au><au>ZHANG XUEDONG</au><au>CHEN JIALEI</au><au>ZHAO HUANYU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power load prediction method based on dynamic decomposition-reconstruction integrated processing</title><date>2023-09-29</date><risdate>2023</risdate><abstract>The invention discloses a power load prediction method based on dynamic decomposition-reconstruction integrated processing, and the method comprises the steps: firstly obtaining power load data, carrying out the preprocessing, carrying out the decomposition of the data through mlptdense decomposition, building a GCN-Reformer power load prediction model according to the decomposed components, carrying out the optimization of the Reformer hyper-parameters through an improved OOA algorithm, and carrying out the prediction of the power load. Selecting low-precision components needing secondary decomposition according to performance evaluation of decomposed components on a verification set, aggregating all the low-precision components by adopting permutation entropy to obtain a high-complexity component and a low-complexity component, performing secondary decomposition by adopting a WPD method, and then predicting all WPD decomposed D components by using a GCN-Reformer model, whether decomposition needs to be carr</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116822742A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Power load prediction method based on dynamic decomposition-reconstruction integrated processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20CHU&rft.date=2023-09-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116822742A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true