Multi-energy fusion wind and light power generation prediction method
The invention discloses a multi-energy fusion wind-solar power generation prediction method, and belongs to the field of new energy, and the prediction method comprises the steps: preprocessing data, building a wind-solar power generation prediction model, and predicting the wind-solar power generat...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | TANG DAOGUI ZHANG QIANNENG XU WENHAO TONG LIANG YUAN YUPENG ZHONG XIAOHUI |
description | The invention discloses a multi-energy fusion wind-solar power generation prediction method, and belongs to the field of new energy, and the prediction method comprises the steps: preprocessing data, building a wind-solar power generation prediction model, and predicting the wind-solar power generation power. Compared with a previous wind and light power generation prediction algorithm, the improved BP neural network prediction algorithm has higher accuracy and has very remarkable advantages in the aspects of overall stability and convergence.
本发明公开了一种多能源融合的风光发电预测方法,属于新能源领域,所述的预测方法包括数据预处理,建立风光发电预测模型,对风光发电功率进行预测;本发明通过改进的BP神经网络预测算法,比以往的风光发电预测算法具有更高的准确性,在整体稳定性和收敛性方面具有十分显著的优势。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116822331A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116822331A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116822331A3</originalsourceid><addsrcrecordid>eNrjZHD1Lc0pydRNzUstSq9USCstzszPUyjPzEtRSATinMz0jBKFgvzy1CKFdJCaxBKQfEFRakpmMpiZm1qSkZ_Cw8CalphTnMoLpbkZFN1cQ5w9dFML8uNTiwsSk4GaS-Kd_QwNzSyMjIyNDR2NiVEDABb0M4A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-energy fusion wind and light power generation prediction method</title><source>esp@cenet</source><creator>TANG DAOGUI ; ZHANG QIANNENG ; XU WENHAO ; TONG LIANG ; YUAN YUPENG ; ZHONG XIAOHUI</creator><creatorcontrib>TANG DAOGUI ; ZHANG QIANNENG ; XU WENHAO ; TONG LIANG ; YUAN YUPENG ; ZHONG XIAOHUI</creatorcontrib><description>The invention discloses a multi-energy fusion wind-solar power generation prediction method, and belongs to the field of new energy, and the prediction method comprises the steps: preprocessing data, building a wind-solar power generation prediction model, and predicting the wind-solar power generation power. Compared with a previous wind and light power generation prediction algorithm, the improved BP neural network prediction algorithm has higher accuracy and has very remarkable advantages in the aspects of overall stability and convergence.
本发明公开了一种多能源融合的风光发电预测方法,属于新能源领域,所述的预测方法包括数据预处理,建立风光发电预测模型,对风光发电功率进行预测;本发明通过改进的BP神经网络预测算法,比以往的风光发电预测算法具有更高的准确性,在整体稳定性和收敛性方面具有十分显著的优势。</description><language>chi ; eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230929&DB=EPODOC&CC=CN&NR=116822331A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25568,76551</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230929&DB=EPODOC&CC=CN&NR=116822331A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TANG DAOGUI</creatorcontrib><creatorcontrib>ZHANG QIANNENG</creatorcontrib><creatorcontrib>XU WENHAO</creatorcontrib><creatorcontrib>TONG LIANG</creatorcontrib><creatorcontrib>YUAN YUPENG</creatorcontrib><creatorcontrib>ZHONG XIAOHUI</creatorcontrib><title>Multi-energy fusion wind and light power generation prediction method</title><description>The invention discloses a multi-energy fusion wind-solar power generation prediction method, and belongs to the field of new energy, and the prediction method comprises the steps: preprocessing data, building a wind-solar power generation prediction model, and predicting the wind-solar power generation power. Compared with a previous wind and light power generation prediction algorithm, the improved BP neural network prediction algorithm has higher accuracy and has very remarkable advantages in the aspects of overall stability and convergence.
本发明公开了一种多能源融合的风光发电预测方法,属于新能源领域,所述的预测方法包括数据预处理,建立风光发电预测模型,对风光发电功率进行预测;本发明通过改进的BP神经网络预测算法,比以往的风光发电预测算法具有更高的准确性,在整体稳定性和收敛性方面具有十分显著的优势。</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD1Lc0pydRNzUstSq9USCstzszPUyjPzEtRSATinMz0jBKFgvzy1CKFdJCaxBKQfEFRakpmMpiZm1qSkZ_Cw8CalphTnMoLpbkZFN1cQ5w9dFML8uNTiwsSk4GaS-Kd_QwNzSyMjIyNDR2NiVEDABb0M4A</recordid><startdate>20230929</startdate><enddate>20230929</enddate><creator>TANG DAOGUI</creator><creator>ZHANG QIANNENG</creator><creator>XU WENHAO</creator><creator>TONG LIANG</creator><creator>YUAN YUPENG</creator><creator>ZHONG XIAOHUI</creator><scope>EVB</scope></search><sort><creationdate>20230929</creationdate><title>Multi-energy fusion wind and light power generation prediction method</title><author>TANG DAOGUI ; ZHANG QIANNENG ; XU WENHAO ; TONG LIANG ; YUAN YUPENG ; ZHONG XIAOHUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116822331A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>TANG DAOGUI</creatorcontrib><creatorcontrib>ZHANG QIANNENG</creatorcontrib><creatorcontrib>XU WENHAO</creatorcontrib><creatorcontrib>TONG LIANG</creatorcontrib><creatorcontrib>YUAN YUPENG</creatorcontrib><creatorcontrib>ZHONG XIAOHUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TANG DAOGUI</au><au>ZHANG QIANNENG</au><au>XU WENHAO</au><au>TONG LIANG</au><au>YUAN YUPENG</au><au>ZHONG XIAOHUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-energy fusion wind and light power generation prediction method</title><date>2023-09-29</date><risdate>2023</risdate><abstract>The invention discloses a multi-energy fusion wind-solar power generation prediction method, and belongs to the field of new energy, and the prediction method comprises the steps: preprocessing data, building a wind-solar power generation prediction model, and predicting the wind-solar power generation power. Compared with a previous wind and light power generation prediction algorithm, the improved BP neural network prediction algorithm has higher accuracy and has very remarkable advantages in the aspects of overall stability and convergence.
本发明公开了一种多能源融合的风光发电预测方法,属于新能源领域,所述的预测方法包括数据预处理,建立风光发电预测模型,对风光发电功率进行预测;本发明通过改进的BP神经网络预测算法,比以往的风光发电预测算法具有更高的准确性,在整体稳定性和收敛性方面具有十分显著的优势。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116822331A |
source | esp@cenet |
subjects | CALCULATING CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONVERSION OR DISTRIBUTION OF ELECTRIC POWER COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY GENERATION PHYSICS SYSTEMS FOR STORING ELECTRIC ENERGY SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Multi-energy fusion wind and light power generation prediction method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TANG%20DAOGUI&rft.date=2023-09-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116822331A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |