Hybrid electric vehicle transmission system knowledge graph construction method, reasoning method and rapid design system

The invention discloses a knowledge graph construction method for a hybrid electric vehicle transmission system, and the method comprises the steps: building a knowledge ontology model of the hybrid electric vehicle transmission system on the basis of constructing a knowledge base and an instance li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG ZHENGYUAN, YANG JINHAN, WANG SHILONG, ZHANG YOUHONG, YANG BO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG ZHENGYUAN
YANG JINHAN
WANG SHILONG
ZHANG YOUHONG
YANG BO
description The invention discloses a knowledge graph construction method for a hybrid electric vehicle transmission system, and the method comprises the steps: building a knowledge ontology model of the hybrid electric vehicle transmission system on the basis of constructing a knowledge base and an instance library of the hybrid electric vehicle transmission system, and combining the characteristics of the hybrid electric vehicle transmission system; a hybrid electric vehicle transmission system knowledge ontology model is set to comprise a transmission scheme ontology, a component structure ontology, a parameter calculation model ontology and a design process knowledge relationship set, and then through knowledge processing including entity recognition, relationship extraction and entity alignment, new knowledge can be accurately and efficiently extracted from big data; knowledge mining and knowledge diffusion are facilitated, and the application range of the knowledge graph is improved from data retrieval and qualitat
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116821355A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116821355A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116821355A3</originalsourceid><addsrcrecordid>eNqNzTELwjAUBOAuDqL-h-euQy0VVylKJyf3EpMzDaYvJS8q_fdWqLvTwfFxN8-GerhFZwgeOkWn6YXWaQ9KUbF0TsQFJhkkoaMHh7eHsSAbVd-SDiwpPnX6mg6pDWZDEUoCO7ZTQ4oNjXw8MRBnf2vLbHZXXrCacpGtz6drVW_RhwbSKw1GaqpLnu8Pu7woy2Pxj_kAw_ZHzw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Hybrid electric vehicle transmission system knowledge graph construction method, reasoning method and rapid design system</title><source>esp@cenet</source><creator>ZHANG ZHENGYUAN ; YANG JINHAN ; WANG SHILONG ; ZHANG YOUHONG ; YANG BO</creator><creatorcontrib>ZHANG ZHENGYUAN ; YANG JINHAN ; WANG SHILONG ; ZHANG YOUHONG ; YANG BO</creatorcontrib><description>The invention discloses a knowledge graph construction method for a hybrid electric vehicle transmission system, and the method comprises the steps: building a knowledge ontology model of the hybrid electric vehicle transmission system on the basis of constructing a knowledge base and an instance library of the hybrid electric vehicle transmission system, and combining the characteristics of the hybrid electric vehicle transmission system; a hybrid electric vehicle transmission system knowledge ontology model is set to comprise a transmission scheme ontology, a component structure ontology, a parameter calculation model ontology and a design process knowledge relationship set, and then through knowledge processing including entity recognition, relationship extraction and entity alignment, new knowledge can be accurately and efficiently extracted from big data; knowledge mining and knowledge diffusion are facilitated, and the application range of the knowledge graph is improved from data retrieval and qualitat</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230929&amp;DB=EPODOC&amp;CC=CN&amp;NR=116821355A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230929&amp;DB=EPODOC&amp;CC=CN&amp;NR=116821355A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG ZHENGYUAN</creatorcontrib><creatorcontrib>YANG JINHAN</creatorcontrib><creatorcontrib>WANG SHILONG</creatorcontrib><creatorcontrib>ZHANG YOUHONG</creatorcontrib><creatorcontrib>YANG BO</creatorcontrib><title>Hybrid electric vehicle transmission system knowledge graph construction method, reasoning method and rapid design system</title><description>The invention discloses a knowledge graph construction method for a hybrid electric vehicle transmission system, and the method comprises the steps: building a knowledge ontology model of the hybrid electric vehicle transmission system on the basis of constructing a knowledge base and an instance library of the hybrid electric vehicle transmission system, and combining the characteristics of the hybrid electric vehicle transmission system; a hybrid electric vehicle transmission system knowledge ontology model is set to comprise a transmission scheme ontology, a component structure ontology, a parameter calculation model ontology and a design process knowledge relationship set, and then through knowledge processing including entity recognition, relationship extraction and entity alignment, new knowledge can be accurately and efficiently extracted from big data; knowledge mining and knowledge diffusion are facilitated, and the application range of the knowledge graph is improved from data retrieval and qualitat</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzTELwjAUBOAuDqL-h-euQy0VVylKJyf3EpMzDaYvJS8q_fdWqLvTwfFxN8-GerhFZwgeOkWn6YXWaQ9KUbF0TsQFJhkkoaMHh7eHsSAbVd-SDiwpPnX6mg6pDWZDEUoCO7ZTQ4oNjXw8MRBnf2vLbHZXXrCacpGtz6drVW_RhwbSKw1GaqpLnu8Pu7woy2Pxj_kAw_ZHzw</recordid><startdate>20230929</startdate><enddate>20230929</enddate><creator>ZHANG ZHENGYUAN</creator><creator>YANG JINHAN</creator><creator>WANG SHILONG</creator><creator>ZHANG YOUHONG</creator><creator>YANG BO</creator><scope>EVB</scope></search><sort><creationdate>20230929</creationdate><title>Hybrid electric vehicle transmission system knowledge graph construction method, reasoning method and rapid design system</title><author>ZHANG ZHENGYUAN ; YANG JINHAN ; WANG SHILONG ; ZHANG YOUHONG ; YANG BO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116821355A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG ZHENGYUAN</creatorcontrib><creatorcontrib>YANG JINHAN</creatorcontrib><creatorcontrib>WANG SHILONG</creatorcontrib><creatorcontrib>ZHANG YOUHONG</creatorcontrib><creatorcontrib>YANG BO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG ZHENGYUAN</au><au>YANG JINHAN</au><au>WANG SHILONG</au><au>ZHANG YOUHONG</au><au>YANG BO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Hybrid electric vehicle transmission system knowledge graph construction method, reasoning method and rapid design system</title><date>2023-09-29</date><risdate>2023</risdate><abstract>The invention discloses a knowledge graph construction method for a hybrid electric vehicle transmission system, and the method comprises the steps: building a knowledge ontology model of the hybrid electric vehicle transmission system on the basis of constructing a knowledge base and an instance library of the hybrid electric vehicle transmission system, and combining the characteristics of the hybrid electric vehicle transmission system; a hybrid electric vehicle transmission system knowledge ontology model is set to comprise a transmission scheme ontology, a component structure ontology, a parameter calculation model ontology and a design process knowledge relationship set, and then through knowledge processing including entity recognition, relationship extraction and entity alignment, new knowledge can be accurately and efficiently extracted from big data; knowledge mining and knowledge diffusion are facilitated, and the application range of the knowledge graph is improved from data retrieval and qualitat</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116821355A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Hybrid electric vehicle transmission system knowledge graph construction method, reasoning method and rapid design system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20ZHENGYUAN&rft.date=2023-09-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116821355A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true